RECURRENT ITERATED FUNCTION SYSTEMS

被引:0
作者
Mihail, Alexandru [1 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Str Acad 14, Bucharest 010014, Romania
来源
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES | 2008年 / 53卷 / 01期
关键词
recurrent iterated function system; fractal set; Lipschitz function; contraction; autosimilar set;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The theory of fractal sets is an old one, but it also is a modern domain of research. One of the main source of the development of the theory of fractal sets is the discovery of a new types of fractal sets. One of the well-known examples are the attractors of iterated function systems. There are several generalization of iterated functions systems: directed-graph iterated function systems, random iterated function systems and so on. The aim of the paper is to present a generalization of iterated function systems (IFS) and of their attractors, the recurrent iterated function systems.
引用
收藏
页码:43 / 53
页数:11
相关论文
共 4 条
[1]  
BARNSLEY MF, 1998, FRACTALS EVERYWHERE
[2]  
FALCONER K, 1990, FRACTAL GEOMETRY FDN
[3]  
Falconer K., 1985, GEOMETRY FRACTAL SET, DOI 10.1017/CBO9780511623738
[4]  
Secelean N. A., 2002, MASURA SI FRACTALI