The H-1-NMR spectrum of the kringle 1 domain of human plasminogen complexed with 6-aminohexanoic acid, an antifibrinolytic drug, has been assigned. Elements of secondary structure have been identified on the basis of sequential, medium and long-range dipolar interactions, back bone amide spin-spin couplings ((3)J(HN-H alpha)) and H-1-H-2 exchange rates. The kringle contains scarcely any repetitive secondary structure: eight reverse turns and two short P-sheets. These comprise 40% and 12% of the domain, respectively. No alpha-helix was found. An aromatic cluster formed by His31, Phe36, Trp62, Phe64, Tyr72 and Tyr74 is indicated by several inter-residue Overhauser connectivities. Contacts between the methyl groups of Leu46 and the side chains of Phe36, Trp62 and Trp25 are observed. A second hydrophobic cluster formed by Tyr9, Ile77 and Leu78 is also indicated. A comparison of secondary structure elements among plasminogen kringles 1 and 4 and tissue-type plasminogen activator kringle 2 suggests that there is variability in the position and number of reverse turns on going from one kringle to another; however, the beta-sheets are conserved among the homologs.