SMALL AMPLITUDE LIMIT-CYCLES FOR CUBIC SYSTEMS

被引:2
作者
GUINEZ, V
SAEZ, E
SZANTO, I
机构
[1] UNIV TECN FEDERICO SANTA MARIA,DEPT MATEMAT,VALPARAISO,CHILE
[2] UNIV CHILE,FAC CIENCIAS,SANTIAGO,CHILE
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 1993年 / 36卷 / 01期
关键词
D O I
10.4153/CMB-1993-009-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study the simultaneous generation of limit cycles out of singular points and infinity for the family of cubic planar systems x = y(ax2 + y2 - 1)-2cy2 + epsilonxy(-4 + y) y = -x(x2 + by2 - 1) + 2dx2 + epsilonxy(-4 + x). With a suitable choice of parameters, the origin and four other singularities are foci and infinity is a periodic orbit. We prove that it is possible to obtain the following configuration of limit cycles: two small amplitude limit cycles out of the origin, a small amplitude limit cycle out of each of the other four foci, and a large amplitude limit cycle out of infinity. We also obtain other configurations with fewer limit cycles.
引用
收藏
页码:54 / 63
页数:10
相关论文
共 12 条
[1]  
Andronov A. A., 1973, QUALITATIVE THEORY 2
[2]  
Bautin N.N., 1952, MAT SB, V100, P181
[3]   THE NUMBER OF LIMIT-CYCLES OF CERTAIN POLYNOMIAL DIFFERENTIAL-EQUATIONS [J].
BLOWS, TR ;
LLOYD, NG .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1984, 98 :215-239
[4]  
BLOWS TR, IN PRESS J DIFFERENT
[5]   LIMIT-CYCLES CLOSE TO INFINITY OF CERTAIN NONLINEAR DIFFERENTIAL-EQUATIONS [J].
GUINEZ, V ;
SAEZ, E ;
SZANTO, I .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1990, 33 (01) :55-59
[6]  
GUNEZ V, 1990, IN PRESS P DYNAMICAL
[7]   A CUBIC SYSTEM WITH 8 SMALL-AMPLITUDE LIMIT-CYCLES [J].
JAMES, EM ;
LLOYD, NG .
IMA JOURNAL OF APPLIED MATHEMATICS, 1991, 47 (02) :163-171
[8]  
LI JB, 1987, CHINESE ANN MATH B, V8, P391
[9]   Some cubic systems with several limit cycles [J].
Lloyd, N. G. ;
Blows, T. R. ;
Kalenge, M. C. .
NONLINEARITY, 1988, 1 (04) :653-669
[10]  
SIBIRSKII KS, 1965, DIFF URAVN, V1, P53