Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects

被引:609
作者
Huang, Jia-Qi [1 ]
Zhang, Qiang [1 ]
Wei, Fei [1 ]
机构
[1] Tsinghua Univ, Beijing Key Lab Green Chem React Engn & Technol, Dept Chem Engn, Beijing 100084, Peoples R China
关键词
Lithium-sulfur batteries; Separators; Interlayers; Carbon; Polysulfides;
D O I
10.1016/j.ensm.2015.09.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of advanced energy storage systems is of crucial importance to meet the ever-growing demands of electric vehicles, portable devices, and renewable energy harvest. Lithium-sulfur (Li-S) batteries, with the advantages in its high specific energy density, low cost of raw materials, and environmental benignity, are of great potential to serve as next-generation batteries. However, there are many obstacles towards the practical application of Li-S batteries such as the electrical insulating nature of sulfur, the volume expansion during lithium insertion, and the shuttle of soluble polysulfide intermediates that induces severe degradation of the cell performance. In this review, the progresses of multifunctional separators/interlayers in Li-S batteries are highlighted. The introduction of multi-functional separators/interlayers with unexpected multiple functionalities is beneficial for better sulfur utilization, efficient polysulfide diffusion inhibition, and anode protection. Multi-functional separator system with ion selective/electrical conductive polymer, sp(2) and porous carbon, metal oxide modified separators, as well as interlinked free-standing nanocarbon, micro/mesoporous carbon, and other conductive inter layers have been proposed. The biomass derived materials was also included as interlayer for advanced Li-S batteries. These novel Li-S cell configurations with multi-functional separators/interlayers are especially suitable for Li-S batteries with high capacity, high stability, and high-rate performance. The opportunities of high-performance separators/interlayers and their applications in next-generation Li-S batteries were also involved. New insights on the role of working separators/interlayers in practical Li-S cells should be further explored to obtain the principle and process for advanced components for energy storage devices based on multi-electron conversion reactions. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 145
页数:19
相关论文
共 133 条
  • [1] Interaction mechanism between a functionalized protective layer and dissolved polysulfide for extended cycle life of lithium sulfur batteries
    Ahn, Wook
    Lim, Sung Nam
    Lee, Dong Un
    Kim, Kwang-Bum
    Chen, Zhongwei
    Yeon, Sun-Hwa
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (18) : 9461 - 9467
  • [2] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [3] Battery separators
    Arora, P
    Zhang, ZM
    [J]. CHEMICAL REVIEWS, 2004, 104 (10) : 4419 - 4462
  • [4] On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries
    Aurbach, Doron
    Pollak, Elad
    Elazari, Ran
    Salitra, Gregory
    Kelley, C. Scordilis
    Affinito, John
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) : A694 - A702
  • [5] Functional Mesoporous Carbon-Coated Separator for Long-Life, High-Energy Lithium-Sulfur Batteries
    Balach, Juan
    Jaumann, Tony
    Klose, Markus
    Oswald, Steffen
    Eckert, Juergen
    Giebeler, Lars
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (33) : 5285 - 5291
  • [6] Mesoporous Carbon Inter layers with Tailored Pore Volume as Polysulfide Reservoir for High-Energy Lithium-Sulfur Batteries
    Balach, Juan
    Jaumann, Tony
    Klose, Markus
    Oswald, Steffen
    Eckert, Juergen
    Giebeler, Lars
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (09) : 4580 - 4587
  • [7] Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification
    Barchasz, Celine
    Molton, Florian
    Duboc, Carole
    Lepretre, Jean-Claude
    Patoux, Sebastien
    Alloin, Fannie
    [J]. ANALYTICAL CHEMISTRY, 2012, 84 (09) : 3973 - 3980
  • [8] Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes
    Bauer, I.
    Kohl, M.
    Althues, H.
    Kaskel, S.
    [J]. CHEMICAL COMMUNICATIONS, 2014, 50 (24) : 3208 - 3210
  • [9] Reduced polysulfide shuttle in lithium-sulfur batteries using Nafion-based separators
    Bauer, I.
    Thieme, S.
    Brueckner, J.
    Althues, H.
    Kaskel, S.
    [J]. JOURNAL OF POWER SOURCES, 2014, 251 : 417 - 422
  • [10] Nanomaterials for rechargeable lithium batteries
    Bruce, Peter G.
    Scrosati, Bruno
    Tarascon, Jean-Marie
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) : 2930 - 2946