ONE-TIME RELATIVISTIC EQUATION AND ITS APPLICATION TO NUCLEON-NUCLEON-SCATTERING

被引:9
作者
ZHU, XQ
GOURISHANKAR, R
KHANNA, FC
LEUNG, GY
MOBED, N
机构
[1] SE MASSACHUSETTS UNIV, DEPT PHYS, N DARTMOUTH, MA 02747 USA
[2] UNIV REGINA, DEPT PHYS & ASTRON, REGINA S4S 0A2, SASKATCHEWAN, CANADA
[3] TRIUMF, VANCOUVER V6T 2A3, BC, CANADA
来源
PHYSICAL REVIEW C | 1992年 / 45卷 / 03期
关键词
D O I
10.1103/PhysRevC.45.959
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A three-dimensional relativistic equation with real time variables is derived from the Bethe-Salpeter equation. The kernel is uniquely determined by the Bethe-Salpeter kernel through an infinite series. The one-time kernel in the momentum representation is represented by a superposition of Feynman amplitudes with the particle 1 or the antiparticle 2 being on the mass shell. The numerical analysis shows that the one-time equation is equivalent to the Gross equation in the N-N scattering case.
引用
收藏
页码:959 / 973
页数:15
相关论文
共 44 条
  • [1] STATIC PROPERTIES OF NUCLEONS IN THE SKYRME MODEL
    ADKINS, GS
    NAPPI, CR
    WITTEN, E
    [J]. NUCLEAR PHYSICS B, 1983, 228 (03) : 552 - 566
  • [2] [Anonymous], 1964, RELATIVISTIC QUANTUM
  • [3] NUCLEON-NUCLEON PARTIAL-WAVE ANALYSIS TO 1 GEV
    ARNDT, RA
    ROPER, LD
    BRYAN, RA
    CLARK, RB
    VERWEST, BJ
    SIGNELL, P
    [J]. PHYSICAL REVIEW D, 1983, 28 (01): : 97 - 122
  • [4] LINEAR INTEGRAL EQUATIONS FOR RELATIVISTIC MULTICHANNEL SCATTERING
    BLANKENBECLER, R
    SUGAR, R
    [J]. PHYSICAL REVIEW, 1966, 142 (04): : 1051 - +
  • [5] SOLUTIONS OF A BETHE-SALPETER EQUATION
    CUTKOSKY, RE
    [J]. PHYSICAL REVIEW, 1954, 96 (04): : 1135 - 1141
  • [6] FORMS OF RELATIVISTIC DYNAMICS
    DIRAC, PAM
    [J]. REVIEWS OF MODERN PHYSICS, 1949, 21 (03) : 392 - 399
  • [7] Erkelenz K., 1974, Physics Reports. Physics Letters Section C, V13c, P191, DOI 10.1016/0370-1573(74)90008-8
  • [8] INTRODUCTION TO N-QUANTUM APPROXIMATION FOR BOUND STATES - DEUTERON IN PSEUDOSCALAR-MESON THEORY
    GREENBERG, OW
    GENOLIO, RJ
    [J]. PHYSICAL REVIEW, 1966, 150 (04): : 1070 - +
  • [9] GROSS F, 1990, PHYS REV C, V41, pR1909
  • [10] RELATIVISTIC FEW-BODY PROBLEM .1. 2-BODY EQUATIONS
    GROSS, F
    [J]. PHYSICAL REVIEW C, 1982, 26 (05): : 2203 - 2225