ANALYTICAL DERIVATION OF THE SCALING LAW FOR THE INVERSE PARTICIPATION RATIO IN QUASI-ONE-DIMENSIONAL DISORDERED-SYSTEMS

被引:80
作者
FYODOROV, YV [1 ]
MIRLIN, AD [1 ]
机构
[1] UNIV ESSEN GESAMTHSCH,FACHBEREICH PHYS,W-4300 ESSEN 1,GERMANY
关键词
D O I
10.1103/PhysRevLett.69.1093
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a calculation of the inverse participation ratio in finite quasi-one-dimensional samples in the whole range of the scaling parameter within the framework of a one-dimensional nonlinear supermatrix sigma-model. The results are valid for both thick wires and random band matrices with large bandwidth and so are relevant for quantum chaos problems. The derived form of the scaling law exactly coincides with the empirical expression deduced earlier from results of computer simulations.
引用
收藏
页码:1093 / 1096
页数:4
相关论文
共 28 条
  • [1] SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS
    ABRAHAMS, E
    ANDERSON, PW
    LICCIARDELLO, DC
    RAMAKRISHNAN, TV
    [J]. PHYSICAL REVIEW LETTERS, 1979, 42 (10) : 673 - 676
  • [2] [Anonymous], 1996, TABLES INTEGRALS SER
  • [3] BLUMEL R, 1992, IN PRESS WEIZMANN I
  • [4] SCALING PROPERTIES OF BAND RANDOM MATRICES
    CASATI, G
    MOLINARI, L
    IZRAILEV, F
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (16) : 1851 - 1854
  • [5] RELEVANCE OF CLASSICAL CHAOS IN QUANTUM-MECHANICS - THE HYDROGEN-ATOM IN A MONOCHROMATIC-FIELD
    CASATI, G
    CHIRIKOV, BV
    SHEPELYANSKY, DL
    GUARNERI, I
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 154 (02): : 77 - 123
  • [6] SCALING OF THE INFORMATION LENGTH IN 1D TIGHT-BINDING MODELS
    CASATI, G
    GUARNERI, I
    IZRAILEV, F
    FISHMAN, S
    MOLINARI, L
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (01) : 149 - 156
  • [7] SPECTRAL PROPERTIES OF SYSTEMS WITH DYNAMIC LOCALIZATION .2. FINITE-SAMPLE APPROACH
    DITTRICH, T
    SMILANSKY, U
    [J]. NONLINEARITY, 1991, 4 (01) : 85 - 101
  • [8] SPECTRAL PROPERTIES OF SYSTEMS WITH DYNAMIC LOCALIZATION .1. THE LOCAL SPECTRUM
    DITTRICH, T
    SMILANSKY, U
    [J]. NONLINEARITY, 1991, 4 (01) : 59 - 84
  • [9] EFETOV KB, 1985, ZH EKSP TEOR FIZ+, V88, P1032
  • [10] EFETOV KB, 1987, ZH EKSP TEOR FIZ+, V92, P638