ON FRACTIONAL MOMENTS OF QUADRATIC EXPRESSIONS IN NORMAL VARIABLES

被引:4
|
作者
MATHAI, AM [1 ]
机构
[1] MCGILL UNIV,DEPT MATH & STAT,MONTREAL H3A 2K6,QUEBEC,CANADA
关键词
QUADRATIC FORMS IN NORMAL VARIABLES; SINGULAR NORMAL; FRACTIONAL MOMENTS; INVERSE MOMENTS; PRODUCT CUMULANTS; PRODUCT MOMENTS;
D O I
10.1080/03610929108830694
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Fractional moments, product cumulants and product moments of general quadratic expressions in singular and nonsingular normal variables are explicitly evaluated. A general method of deriving such moments is also indicated. Particular cases are shown to agree with known results.
引用
收藏
页码:3159 / 3174
页数:16
相关论文
共 42 条
  • [1] Fractional characteristic functions, and a fractional calculus approach for moments of random variables
    Tomovski, Zivorad
    Metzler, Ralf
    Gerhold, Stefan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (04) : 1307 - 1323
  • [2] Fractional characteristic functions, and a fractional calculus approach for moments of random variables
    Živorad Tomovski
    Ralf Metzler
    Stefan Gerhold
    Fractional Calculus and Applied Analysis, 2022, 25 : 1307 - 1323
  • [3] Riesz fractional integrals and complex fractional moments for the probabilistic characterization of random variables
    Di Paola, Mario
    Pinnola, Francesco Paolo
    PROBABILISTIC ENGINEERING MECHANICS, 2012, 29 : 149 - 156
  • [4] Application of Fractional Moments for Comparing Random Variables with Varying Probability Distributions
    Al Shami, Munther R.
    Mugdadi, A. R.
    Nigmatullin, R. R.
    Osokin, S. I.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2013, 8 (02): : 366 - 390
  • [5] Estimation of the confidence limits for the quadratic forms in normal variables using a simple Gaussian distribution approximation
    Zele, M
    Juricic, D
    COMPUTATIONAL STATISTICS, 2005, 20 (01) : 137 - 150
  • [6] Estimation of the confidence limits for the quadratic forms in normal variables using a simple Gaussian distribution approximation
    Mina Žele
    Djani Juričić
    Computational Statistics, 2005, 20 : 137 - 150
  • [7] On inverse moments of nonnegative random variables
    Garcia, NL
    Palacios, JL
    STATISTICS & PROBABILITY LETTERS, 2001, 53 (03) : 235 - 239
  • [8] The discrete moment problem with fractional moments
    Ninh, Anh
    Prekopa, Andras
    OPERATIONS RESEARCH LETTERS, 2013, 41 (06) : 715 - 718
  • [9] Optimal predictive densities and fractional moments
    Taufer, Emanuele
    Bose, Sudip
    Tagliani, Aldo
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2009, 25 (01) : 57 - 71
  • [10] Hausdorff moment problem and fractional moments
    Gzyl, H.
    Tagliani, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (11) : 3319 - 3328