On Tolerant Fuzzy c-Means Clustering

被引:10
|
作者
Hamasuna, Yukihiro [1 ]
Endo, Yasunori [2 ]
Miyamoto, Sadaaki [2 ]
机构
[1] Univ Tsukuba, Doctoral Program Risk Engn, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
[2] Univ Tsukuba, Fac Syst & Informat Engn, Dept Risk Engn, Tsukuba, Ibaraki 3058573, Japan
基金
日本学术振兴会;
关键词
fuzzy c-means clustering; uncertainty; tolerance; fuzzy classification function; optimization;
D O I
10.20965/jaciii.2009.p0421
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new type of clustering algorithms by using a tolerance vector called tolerant fuzzy c-means clustering (TFCM). In the proposed algorithms, the new concept of tolerance vector plays very important role. In the original concept of tolerance, a tolerance vector attributes to each data. This concept is developed to handle data flexibly, that is, a tolerance vector attributes not only to each data but also each cluster. Using the new concept, we can consider the influence of clusters to each data by the tolerance. First, the new concept of tolerance is introduced into optimization problems based on conventional fuzzy c-means clustering (FCM). Second, the optimization problems with tolerance are solved by using Karush-Kuhn-Tucker conditions. Third, new clustering algorithms are constructed based on the explicit optimal solutions of the optimization problems. Finally, the effectiveness of the proposed algorithms is verified through numerical examples by fuzzy classification function.
引用
收藏
页码:421 / 428
页数:8
相关论文
共 50 条
  • [21] Gaussian Collaborative Fuzzy C-Means Clustering
    Yunlong Gao
    Zhihao Wang
    Huidui Li
    Jinyan Pan
    International Journal of Fuzzy Systems, 2021, 23 : 2218 - 2234
  • [22] Fuzzy c-means clustering of incomplete data
    Hathaway, RJ
    Bezdek, JC
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (05): : 735 - 744
  • [23] An Accelerated Fuzzy C-Means clustering algorithm
    Hershfinkel, D
    Dinstein, I
    APPLICATIONS OF FUZZY LOGIC TECHNOLOGY III, 1996, 2761 : 41 - 52
  • [24] Novel possibilistic fuzzy c-means clustering
    School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
    不详
    Tien Tzu Hsueh Pao, 2008, 10 (1996-2000):
  • [25] Hierarchically Structured Fuzzy c-Means Clustering
    Hye Won Suk
    Ji Yeh Choi
    Heungsun Hwang
    Behaviormetrika, 2013, 40 (1) : 1 - 17
  • [26] Fuzzy Approaches To Hard c-Means Clustering
    Runkler, Thomas A.
    Keller, James M.
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [27] Suppressed fuzzy C-means clustering algorithm
    Fan, JL
    Zhen, WZ
    Xie, WX
    PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1607 - 1612
  • [28] Relative entropy fuzzy c-means clustering
    Zarinbal, M.
    Zarandi, M. H. Fazel
    Turksen, I. B.
    INFORMATION SCIENCES, 2014, 260 : 74 - 97
  • [29] Diverse fuzzy c-means for image clustering
    Zhang, Lingling
    Luo, Minnan
    Liu, Jun
    Li, Zhihui
    Zheng, Qinghua
    PATTERN RECOGNITION LETTERS, 2020, 130 (130) : 275 - 283
  • [30] Soil clustering by fuzzy c-means algorithm
    Goktepe, AB
    Altun, S
    Sezer, A
    ADVANCES IN ENGINEERING SOFTWARE, 2005, 36 (10) : 691 - 698