Generalization of strong law of large numbers for nonnegative random variables

被引:0
作者
Ghazani, Z. Shokooh [1 ]
机构
[1] Islamic Azad Univ, Cent Tehran Branch, Dept Math, Tehran, Iran
来源
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS | 2018年 / 57卷 / 05期
关键词
Strong law of large numbers; Convergence rate;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the convergence rate in the strong law of large numbers is presented for a sequence of nonnegative random variables with bounded q-th (q >= 1) moments. This result imply an extension version of Kolmogorov's classical strong law to the nonnegative case.
引用
收藏
页码:128 / 132
页数:5
相关论文
共 10 条
[2]   THE STRONG LAW OF LARGE NUMBERS FOR EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES [J].
Chen, Yiqing ;
Chen, Anyue ;
Ng, Kai W. .
JOURNAL OF APPLIED PROBABILITY, 2010, 47 (04) :908-922
[3]   An intermediate Baum-Katz theorem [J].
Gut, Allan ;
Stadtmueller, Ulrich .
STATISTICS & PROBABILITY LETTERS, 2011, 81 (10) :1486-1492
[4]   ON THE RATE OF CONVERGENCE IN THE STRONG LAW OF LARGE NUMBERS FOR ARRAYS [J].
HU, TC ;
WEBER, NC .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 45 (03) :479-482
[5]  
Kolmogorov A. N., 1960, FDN THEORY PROBABILI
[6]   On the Strong Law of Large Numbers for Sequences of Dependent Random Variables [J].
Korchevsky, V. M. ;
Petrov, V. V. .
VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2010, 43 (03) :143-147
[7]   ON THE STRONG LAW OF LARGE NUMBERS FOR NONNEGATIVE RANDOM VARIABLES [J].
Petrov, V. V. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2009, 53 (02) :346-U168
[8]  
Petrov V. V., 1969, THEOR VEROYATNOST PR, V14
[9]  
Taylor R, 2007, INT J APPL MATH STAT, V20, P643
[10]  
Xu H, 2013, INT J APPL MATH STAT, V44, P168