Bridging Levels of Understanding in Schizophrenia Through Computational Modeling
被引:30
作者:
Anticevic, Alan
论文数: 0引用数: 0
h-index: 0
机构:
Yale Univ, Dept Psychiat, 34 Pk St, New Haven, CT 06519 USA
Natl Inst Alcohol Abuse & Alcoholism, Ctr Translat Neurosci Alcoholism, New Haven, CT 06516 USA
Connecticut Mental Hlth Ctr, Abraham Ribicoff Res Facil, New Haven, CT 06516 USAYale Univ, Dept Psychiat, 34 Pk St, New Haven, CT 06519 USA
Anticevic, Alan
[1
,2
,3
]
Murray, John D.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Ctr Neural Sci, New York, NY 10003 USAYale Univ, Dept Psychiat, 34 Pk St, New Haven, CT 06519 USA
Murray, John D.
[4
]
Barch, Deanna M.
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Dept Psychol, St Louis, MO 63130 USA
Washington Univ, Dept Psychiat, St Louis, MO 63130 USAYale Univ, Dept Psychiat, 34 Pk St, New Haven, CT 06519 USA
Barch, Deanna M.
[5
,6
]
机构:
[1] Yale Univ, Dept Psychiat, 34 Pk St, New Haven, CT 06519 USA
[2] Natl Inst Alcohol Abuse & Alcoholism, Ctr Translat Neurosci Alcoholism, New Haven, CT 06516 USA
[3] Connecticut Mental Hlth Ctr, Abraham Ribicoff Res Facil, New Haven, CT 06516 USA
[4] NYU, Ctr Neural Sci, New York, NY 10003 USA
[5] Washington Univ, Dept Psychol, St Louis, MO 63130 USA
[6] Washington Univ, Dept Psychiat, St Louis, MO 63130 USA
computational modeling;
schizophrenia;
symptoms;
cognitive deficits;
systems neuroscience;
D O I:
10.1177/2167702614562041
中图分类号:
B849 [应用心理学];
学科分类号:
040203 ;
摘要:
Schizophrenia is an illness with a remarkably complex symptom presentation that has thus far been out of reach of neuroscientific explanation. This presents a fundamental problem for developing better treatments that target specific symptoms or root causes. One promising path forward is the incorporation of computational neuroscience, which provides a way to formalize experimental observations and, in turn, make theoretical predictions for subsequent studies. We review three complementary approaches: (a) biophysically based models developed to test cellular-level and synaptic hypotheses, (b) connectionist models that give insight into large-scale neural-system-level disturbances in schizophrenia, and (c) models that provide a formalism for observations of complex behavioral deficits, such as negative symptoms. We argue that harnessing all of these modeling approaches represents a productive approach for better understanding schizophrenia. We discuss how blending these approaches can allow the field to progress toward a more comprehensive understanding of schizophrenia and its treatment.
机构:
Washington Univ, Dept Psychol, St Louis, MO 63130 USA
Washington Univ, Dept Psychiat, St Louis, MO USA
Washington Univ, Dept Radiol, St Louis, MO USAWashington Univ, Dept Psychol, St Louis, MO 63130 USA
Barch, Deanna M.
Dowd, Erin C.
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Neurosci Program, St Louis, MO USAWashington Univ, Dept Psychol, St Louis, MO 63130 USA
机构:
Washington Univ, Dept Psychol, St Louis, MO 63130 USA
Washington Univ, Dept Psychiat, St Louis, MO USA
Washington Univ, Dept Radiol, St Louis, MO USAWashington Univ, Dept Psychol, St Louis, MO 63130 USA
Barch, Deanna M.
Dowd, Erin C.
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Neurosci Program, St Louis, MO USAWashington Univ, Dept Psychol, St Louis, MO 63130 USA