SYMMETRIC IDENTITIES FOR DEGENERATE q-POLY-BERNOULLI NUMBERS AND POLYNOMIALS

被引:5
|
作者
Jung, N. S. [1 ]
Ryoo, C. S. [2 ]
机构
[1] Hannam Univ, Coll Talmage Liberal Arts, Daejeon 34430, South Korea
[2] Hannam Univ, Dept Math, Daejeon 34430, South Korea
来源
JOURNAL OF APPLIED MATHEMATICS & INFORMATICS | 2018年 / 36卷 / 1-2期
关键词
degenerate poly-Bernoulli polynomials; degenerate q-poly-Bernoulli polynomials; Stirling numbers of the second kind; q-polylogarithm function;
D O I
10.14317/jami.2018.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a degenerate q-poly-Bernoulli numbers and polynomials include q-logarithm function. We derive some relations with this polynomials and the Stirling numbers of second kind and investigate some symmetric identities using special functions that are involving this polynomials.
引用
收藏
页码:29 / 38
页数:10
相关论文
共 39 条
  • [1] On Generalized q-Poly-Bernoulli Numbers and Polynomials
    Bilgic, Secil
    Kurt, Veli
    FILOMAT, 2020, 34 (02) : 515 - 520
  • [2] IDENTITIES INVOLVING THE DEGENERATE GENERALIZED (p, q)-POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Jung, N. S.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2020, 38 (5-6): : 601 - 609
  • [3] Degenerate Hermite poly-Bernoulli numbers and polynomials with q-parameter
    Khan, Waseem A.
    Khan, Idrees A.
    Ali, Musharraf
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (01): : 3 - 15
  • [4] Fully degenerate Bernoulli numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Park, Jin-Woo
    DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 604 - 614
  • [5] Representations of degenerate poly-Bernoulli polynomials
    Taekyun Kim
    Dae San Kim
    Jongkyum Kwon
    Hyunseok Lee
    Journal of Inequalities and Applications, 2021
  • [6] Representations of degenerate poly-Bernoulli polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Jongkyum
    Lee, Hyunseok
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [7] Degenerate poly-Bernoulli polynomials arising from degenerate polylogarithm
    Kim, Taekyun
    Kim, Dansan
    Kim, Han-Young
    Lee, Hyunseok
    Jang, Lee-Chae
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [8] Degenerate poly-Bernoulli polynomials arising from degenerate polylogarithm
    Taekyun Kim
    Dansan Kim
    Han-Young Kim
    Hyunseok Lee
    Lee-Chae Jang
    Advances in Difference Equations, 2020
  • [9] DEGENERATE POLY-BERNOULLI POLYNOMIALS OF THE SECOND KIND
    Dolgy, Dmitry V.
    Kim, Dae San
    Kim, Taekyun
    Mansour, Toufik
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (05) : 954 - 966
  • [10] Degenerate poly-Bell polynomials and numbers
    Taekyun Kim
    Hye Kyung Kim
    Advances in Difference Equations, 2021