Symmetric alternating sign matrices

被引:0
|
作者
Brualdi, Richard A. [1 ]
Kim, Hwa Kyung [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Sangmyung Univ, Dept Math Educ, Seoul 110743, South Korea
来源
AUSTRALASIAN JOURNAL OF COMBINATORICS | 2014年 / 60卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we consider completions of n x n symmetric (0, -1)-matrices to symmetric alternating sign matrices by replacing certain 0s with + 1s. In particular, we prove that any n x n symmetric (0, -1)-matrix that can be completed to an alternating sign matrix by replacing some 0s with + 1s can be completed to a symmetric alternating sign matrix. Similarly, any n x n symmetric (0, + 1)-matrix that can be completed to an alternating sign matrix by replacing some 0s with -1s can be completed to a symmetric alternating sign matrix.
引用
收藏
页码:333 / 345
页数:13
相关论文
共 50 条
  • [1] Alternating sign matrices and totally symmetric plane partitions
    Fischer, Ilse
    Schreier-Aigner, Florian
    ALGEBRAIC COMBINATORICS, 2024, 7 (05):
  • [2] Diagonally and antidiagonally symmetric alternating sign matrices of odd order
    Behrend, Roger E.
    Fischer, Ilse
    Konvalinka, Matjaz
    ADVANCES IN MATHEMATICS, 2017, 315 : 324 - 365
  • [3] Vertically symmetric alternating sign matrices and a multivariate Laurent polynomial identity
    Fischer, Ilse
    Riegler, Lukas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (01):
  • [4] Extreme diagonally and antidiagonally symmetric alternating sign matrices of odd order
    Ayyer, Arvind
    Behrend, Roger E.
    Fischer, Ilse
    ADVANCES IN MATHEMATICS, 2020, 367
  • [5] Alternating Sign Matrices and Polynomiography
    Kalantari, Bahman
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (02):
  • [6] Completions of Alternating Sign Matrices
    Richard A. Brualdi
    Hwa Kyung Kim
    Graphs and Combinatorics, 2015, 31 : 507 - 522
  • [7] Patterns of alternating sign matrices
    Brualdi, Richard A.
    Kiernan, Kathleen P.
    Meyer, Seth A.
    Schroeder, Michael W.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (10) : 3967 - 3990
  • [8] Alternating sign matrices and tournaments
    Chapman, R
    ADVANCES IN APPLIED MATHEMATICS, 2001, 27 (2-3) : 318 - 335
  • [9] ALTERNATING-SIGN MATRICES
    BOUSQUETMELOU, M
    HABSIEGER, L
    DISCRETE MATHEMATICS, 1995, 139 (1-3) : 57 - 72
  • [10] DETERMINANTS AND ALTERNATING SIGN MATRICES
    ROBBINS, DP
    RUMSEY, H
    ADVANCES IN MATHEMATICS, 1986, 62 (02) : 169 - 184