Symmetric alternating sign matrices

被引:0
作者
Brualdi, Richard A. [1 ]
Kim, Hwa Kyung [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Sangmyung Univ, Dept Math Educ, Seoul 110743, South Korea
来源
AUSTRALASIAN JOURNAL OF COMBINATORICS | 2014年 / 60卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we consider completions of n x n symmetric (0, -1)-matrices to symmetric alternating sign matrices by replacing certain 0s with + 1s. In particular, we prove that any n x n symmetric (0, -1)-matrix that can be completed to an alternating sign matrix by replacing some 0s with + 1s can be completed to a symmetric alternating sign matrix. Similarly, any n x n symmetric (0, + 1)-matrix that can be completed to an alternating sign matrix by replacing some 0s with -1s can be completed to a symmetric alternating sign matrix.
引用
收藏
页码:333 / 345
页数:13
相关论文
共 5 条
[1]  
[Anonymous], 1991, COMBIN MATRIX THEORY, DOI DOI 10.1017/CBO9781107325708
[2]  
Bona M., 2007, INTRO ENUMERATIVE CO
[3]  
Bressoud D., 1999, PROOFS CONFIRMATIONS
[4]  
Brualdi R. A., GRAPHS COMB IN PRESS
[5]   Patterns of alternating sign matrices [J].
Brualdi, Richard A. ;
Kiernan, Kathleen P. ;
Meyer, Seth A. ;
Schroeder, Michael W. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (10) :3967-3990