DATA FUSION WITH MINIMAL COMMUNICATION

被引:31
作者
LUO, ZQ [1 ]
TSITSIKLIS, JN [1 ]
机构
[1] MIT,INFORMAT & DECIS SYST LAB,CAMBRIDGE,MA 02139
基金
加拿大自然科学与工程研究理事会;
关键词
DECENTRALIZED ESTIMATION; DISTRIBUTED COMPUTATION; DATA FUSION; COMMUNICATION COMPLEXITY; LOWER BOUNDS;
D O I
10.1109/18.333867
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Two sensors obtain data vectors x and y, respectively, and transmit real vectors ($) over right arrow m(1)(x) and ($) over right arrow(2)(y), respectively, to a fusion center. We obtain tight lower bounds on the number of messages (the sum of the dimensions of iii, and iii,) that have to be transmitted for the fusion center to be able to evaluate a given function ($) over right arrow f(x,y). When the function ($) over right arrow f is linear, we show that these bounds are effectively computable. Certain decentralized estimation problems can be cast in our framework and are discussed in some detail. In particular, we consider the case where x and y are random variables representing noisy measurements and ($) over right arrow f(x,y) = E[z\x,y], where z is a random variable to be estimated. Furthermore, we establish that a standard method for combining decentralized estimates of Gaussian random variables has nearly optimal communication requirements.
引用
收藏
页码:1551 / 1563
页数:13
相关论文
共 22 条
[1]  
Abelson H., 1978, Theoretical Computer Science, V6, P41, DOI 10.1016/0304-3975(78)90004-X
[2]   LOWER BOUNDS ON INFORMATION-TRANSFER IN DISTRIBUTED COMPUTATIONS [J].
ABELSON, H .
JOURNAL OF THE ACM, 1980, 27 (02) :384-392
[3]  
[Anonymous], 1960, MATH SOC SCI
[4]  
[Anonymous], 2016, LINEAR NONLINEAR PRO
[5]  
Bertsekas D.P., 1989, PARALLEL DISTRIBUTED
[6]   ON A THEORY OF COMPUTATION AND COMPLEXITY OVER THE REAL NUMBERS - NP-COMPLETENESS, RECURSIVE FUNCTIONS AND UNIVERSAL MACHINES [J].
BLUM, L ;
SHUB, M ;
SMALE, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 21 (01) :1-46
[7]  
Borodin A., 1975, COMPUTATIONAL COMPLE
[8]  
CHONG CY, 1979, 2ND P MIT ONR WORKSH
[9]   DECENTRALIZED STRUCTURES FOR PARALLEL KALMAN FILTERING [J].
HASHEMIPOUR, HR ;
ROY, S ;
LAUB, AJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (01) :88-94
[10]  
HURWICZ L, 1985, STUDIES MATH EC