A DIFFUSION EQUATION WITH LOCALIZED CHEMICAL-REACTIONS

被引:26
作者
CHADAM, JM
YIN, HM
机构
[1] MCMASTER UNIV,DEPT MATH,HAMILTON L8S 4K1,ONTARIO,CANADA
[2] UNIV TORONTO,DEPT MATH,TORONTO M5S 1A1,ONTARIO,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1017/S0013091500018721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In some chemical reaction-diffusion processes, the reaction takes place only at some local sites, due to the presence of a catalyst. In this paper we study the well-posedness of a model problem of this type. Sufficient conditions are found to ensure global existence and finite time blowup. The blowup rate and the blowup set are also investigated in the case of special nonlinearity.
引用
收藏
页码:101 / 118
页数:18
相关论文
共 17 条
[1]  
Alikakos ND., 1979, COMMUN PART DIFF EQ, V4, P827, DOI [10.1080/03605307908820113, DOI 10.1007/S11425-018-9461-8]
[2]  
Aronson D.G., 1968, ANN SCUOLA NORM-SCI, V3, P607
[3]  
BEBERNES J, 1989, MATH PROBLEMS COMBUS, V83
[4]  
BIMPONGB.K, 1974, J CHEM PHYS, V60, P3124, DOI 10.1063/1.1681498
[5]   THE BLOWUP PROPERTY OF SOLUTIONS TO SOME DIFFUSION-EQUATIONS WITH LOCALIZED NONLINEAR REACTIONS [J].
CHADAM, JM ;
PEIRCE, A ;
YIN, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 169 (02) :313-328
[6]   THE BLOW-UP RATE FOR THE HEAT-EQUATION WITH A NONLINEAR BOUNDARY-CONDITION [J].
FILA, M ;
QUITTNER, P .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1991, 14 (03) :197-205
[7]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[8]  
GIGA Y, 1987, INDIANA U MATH J, V34, P425
[9]  
Ladyzhenskaya O. A., 1968, LINEAR QUASILINEAR E
[10]   NONEXISTENCE THEOREMS FOR HEAT EQUATION WITH NONLINEAR BOUNDARY-CONDITIONS AND FOR POROUS-MEDIUM EQUATION BACKWARD IN TIME [J].
LEVINE, HA ;
PAYNE, LE .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 16 (02) :319-334