IMPLICIT FUNCTION THEOREM FOR SMALL DIVISOR PROBLEMS

被引:7
作者
ZEHNDER, E [1 ]
机构
[1] INST ADV STUDY,SCH NAT SCI,PRINCETON,NJ 08540
关键词
D O I
10.1090/S0002-9904-1974-13407-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:174 / 179
页数:6
相关论文
共 50 条
[41]   IMPLICIT FUNCTION THEOREM FOR NONDIFFERENTIABLE MAPPINGS [J].
CHOW, SN ;
LASOTA, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 34 (01) :141-&
[42]   AN IMPLICIT FUNCTION THEOREM FOR THE STREAM CALCULUS [J].
Boreale, Michele ;
Collodi, Luisa ;
Gorla, Daniele .
LOGICAL METHODS IN COMPUTER SCIENCE, 2024, 20 (02) :1-15
[43]   Gevrey asymptotic implicit function theorem [J].
Nikolaev, Nikita .
ENSEIGNEMENT MATHEMATIQUE, 2024, 70 (1-2) :251-282
[44]   IMPLICIT FUNCTION THEOREM FOR BANACH ALGEBRAS [J].
HAYASHI, M .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 13 (MAY) :155-161
[45]   IMPLICIT FUNCTION THEOREM IN SCALAR CASE [J].
FREEDMAN, HI .
CANADIAN MATHEMATICAL BULLETIN, 1969, 12 (06) :721-&
[47]   A uniformly computable Implicit Function Theorem [J].
McNicholl, Timothy H. .
MATHEMATICAL LOGIC QUARTERLY, 2008, 54 (03) :272-279
[48]   On an extension of a global implicit function theorem [J].
Berger, Thomas ;
Haller, Frederic .
COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) :439-450
[49]   A homological version of the implicit function theorem [J].
Biasi, Carlos ;
dos Santos, Edivaldo L. .
SEMIGROUP FORUM, 2006, 72 (03) :353-361
[50]   An implicit-function theorem for inclusions [J].
E. R. Avakov ;
G. G. Magaril-Il’yaev .
Mathematical Notes, 2012, 91 :764-769