MICROFABRICATION OF 3-DIMENSIONAL BORON STRUCTURES BY LASER CHEMICAL-PROCESSING

被引:40
作者
JOHANSSON, S [1 ]
SCHWEITZ, JA [1 ]
WESTBERG, H [1 ]
BOMAN, M [1 ]
机构
[1] UNIV UPPSALA,DEPT INORGAN CHEM,S-75121 UPPSALA,SWEDEN
关键词
D O I
10.1063/1.351904
中图分类号
O59 [应用物理学];
学科分类号
摘要
A method for microfabrication of three-dimensional structures in free space is presented. Laser-assisted chemical vapor deposition is used to grow a material at a point where a laser beam locally heats the substrate. By moving the substrate relative to the laser beam with a micropositioning system, three-dimensional shapes can be created. Helical shapes are generated utilizing three linear translational axes as well as an additional rotational axis. Tilting the substrate to align the growth direction with the laser beam direction facilitates improved process control. The smallest structures that can be grown with this technique are about 1 mum. Amorphous boron fibers and crystalline boron springs have been manufactured as two examples of micromechanical elements. The amorphous boron fibers show excellent mechanical properties: A modulus of elasticity of 420-450 GPa, a fracture strain of 2.7%-3.7%, and a fracture stress of 12-17 GPa. The crystalline boron springs produced so far display only moderate mechanical characteristics. This is because of the irregular fiber surface with protruding grains and amorphous nodules. Nevertheless, a maximum relative resilience of about 9% for a tightly wound spring has been obtained. The crystal structure of the grains examined show a fair agreement with the beta-boron phase, even though distinct deviations are observed. Metastable arrangement of the B-12 icosahedral units is suggested as a possible explanation. A high density of (100) twins and stacking faults are identified by transmission electron microscopy. By further process and system development it is believed that micromechanical details can be tailored more or less arbitrarily for different applications.
引用
收藏
页码:5956 / 5963
页数:8
相关论文
共 21 条
  • [1] LASER GROWN SINGLE-CRYSTALS OF SILICON
    BAUERLE, D
    LEYENDECKER, G
    WAGNER, D
    BAUSER, E
    LU, YC
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1983, 30 (03): : 147 - 149
  • [2] Becker E. W., 1986, Microelectronic Engineering, V4, P35, DOI 10.1016/0167-9317(86)90004-3
  • [3] Bever M. B., 1986, ENCY MATER SCI ENG, P402
  • [4] Bloomstein T. M., 1991, Proceedings. IEEE Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots (Cat. No.91CH2957-9), P202, DOI 10.1109/MEMSYS.1991.114796
  • [5] BOMAN M, IN PRESS
  • [6] ACCURATE REFINEMENT OF BETA-RHOMBOHEDRAL BORON STRUCTURE
    CALLMER, B
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1977, 33 (JUN15): : 1951 - 1954
  • [7] THE CRYSTAL STRUCTURE OF A SIMPLE RHOMBOHEDRAL FORM BORON
    DECKER, BF
    KASPER, JS
    [J]. ACTA CRYSTALLOGRAPHICA, 1959, 12 (07): : 503 - 506
  • [8] MICROMECHANICAL FRACTURE STRENGTH OF SILICON
    ERICSON, F
    SCHWEITZ, JA
    [J]. JOURNAL OF APPLIED PHYSICS, 1990, 68 (11) : 5840 - 5844
  • [9] GUCKEL H, 1991, P IEEE MICR EL MECH, P74
  • [10] THE STRUCTURE OF TETRAGONAL BORON
    HOARD, JL
    HUGHES, RE
    SANDS, DE
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (17) : 4507 - 4515