BULK AND BOUNDARY OPERATORS IN CONFORMAL FIELD-THEORY

被引:296
作者
CARDY, JL [1 ]
LEWELLEN, DC [1 ]
机构
[1] UNIV CALIF SANTA BARBARA,DEPT PHYS,SANTA BARBARA,CA 93106
基金
美国国家科学基金会;
关键词
D O I
10.1016/0370-2693(91)90828-E
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In conformal field theory on a manifold with a boundary, there is a short-distance expansion expressing local bulk operators in terms of boundary operators at an adjacent boundary. We show how the coefficients of such an expansion are given solely by data appearing in the bulk theory on the sphere and torus. In particular, the coefficients of the identity operator, which fix the one-point functions, are determined by the elements of the matrix S which implements modular transformations on the torus. The other coefficients are related, in addition, to the elements of the matrices implementing duality transformations on the conformal blocks of the four-point functions on the sphere. Some examples are given.
引用
收藏
页码:274 / 278
页数:5
相关论文
共 50 条
[1]   LOGARITHMIC OPERATORS IN CONFORMAL FIELD-THEORY [J].
GURARIE, V .
NUCLEAR PHYSICS B, 1993, 410 (03) :535-549
[2]   CONFORMAL FIELD-THEORY OF TWISTED VERTEX OPERATORS [J].
DOLAN, L ;
GODDARD, P ;
MONTAGUE, P .
NUCLEAR PHYSICS B, 1990, 338 (03) :529-601
[3]   EXACT SOLUTION OF A BOUNDARY CONFORMAL FIELD-THEORY [J].
CALLAN, CG ;
KLEBANOV, IR ;
LUDWIG, AWW ;
MALDACENA, JM .
NUCLEAR PHYSICS B, 1994, 422 (03) :417-448
[4]   FREE FERMION REPRESENTATION OF A BOUNDARY CONFORMAL FIELD-THEORY [J].
POLCHINSKI, J ;
THORLACIUS, L .
PHYSICAL REVIEW D, 1994, 50 (02) :R622-R626
[5]   On marginal operators in boundary conformal field theory [J].
Christopher P. Herzog ;
Itamar Shamir .
Journal of High Energy Physics, 2019
[6]   On marginal operators in boundary conformal field theory [J].
Herzog, Christopher P. ;
Shamir, Itamar .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (10)
[7]   CONFORMAL FIELD-THEORY [J].
GAWEDZKI, K .
ASTERISQUE, 1989, (177-78) :95-126
[8]   CONFORMAL FIELD-THEORY AND THE SYMMETRIES OF STRING FIELD-THEORY [J].
HOROWITZ, GT ;
MARTIN, SP .
NUCLEAR PHYSICS B, 1988, 296 (01) :220-252
[9]   TUNNELING IN QUANTUM WIRES - A BOUNDARY CONFORMAL FIELD-THEORY APPROACH [J].
WONG, E ;
AFFLECK, I .
NUCLEAR PHYSICS B, 1994, 417 (03) :403-438
[10]   SPINONS IN CONFORMAL FIELD-THEORY [J].
BERNARD, D ;
PASQUIER, V ;
SERBAN, D .
NUCLEAR PHYSICS B, 1994, 428 (03) :612-628