Conn: A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks

被引:3434
作者
Whitfield-Gabrieli, Susan
Nieto-Castanon, Alfonso
机构
[1] MIT, Dept Brain & Cognit Sci, Martinos Imaging Ctr, McGovern Inst Brain Res, Cambridge, MA 02139 USA
[2] MIT, Poitras Ctr Affect Disorders Res, Cambridge, MA 02139 USA
关键词
brain connectivity; CompCor functional connectivity; intrinsic connectivity; noise; resting state;
D O I
10.1089/brain.2012.0073
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Resting state functional connectivity reveals intrinsic, spontaneous networks that elucidate the functional architecture of the human brain. However, valid statistical analysis used to identify such networks must address sources of noise in order to avoid possible confounds such as spurious correlations based on non-neuronal sources. We have developed a functional connectivity toolbox Conn (www.nitrc.org/projects/conn) that implements the component-based noise correction method (CompCor) strategy for physiological and other noise source reduction, additional removal of movement, and temporal covariates, temporal filtering and windowing of the residual blood oxygen level-dependent (BOLD) contrast signal, first-level estimation of multiple standard functional connectivity magnetic resonance imaging (fcMRI) measures, and second-level random-effect analysis for resting state as well as task-related data. Compared to methods that rely on global signal regression, the CompCor noise reduction method allows for interpretation of anticorrelations as there is no regression of the global signal. The toolbox implements fcMRI measures, such as estimation of seed-to-voxel and region of interest (ROI)-to-ROI functional correlations, as well as semipartial correlation and bivariate/multivariate regression analysis for multiple ROI sources, graph theoretical analysis, and novel voxel-to-voxel analysis of functional connectivity. We describe the methods implemented in the Conn toolbox for the analysis of fcMRI data, together with examples of use and interscan reliability estimates of all the implemented fcMRI measures. The results indicate that the CompCor method increases the sensitivity and selectivity of fcMRI analysis, and show a high degree of interscan reliability for many fcMRI measures.
引用
收藏
页码:125 / 141
页数:17
相关论文
共 75 条
  • [1] A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
    Achard, S
    Salvador, R
    Whitcher, B
    Suckling, J
    Bullmore, ET
    [J]. JOURNAL OF NEUROSCIENCE, 2006, 26 (01) : 63 - 72
  • [2] Efficiency and cost of economical brain functional networks
    Achard, Sophie
    Bullmore, Edward T.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (02) : 174 - 183
  • [3] Altered Functioning of the Executive Control Circuit in Late-Life Depression: Episodic and Persistent Phenomena
    Aizenstein, Howard J.
    Butters, Meryl A.
    Wu, Minjie
    Mazurkewicz, Laura M.
    Stenger, V. Andrew
    Gianaros, Peter J.
    Becker, James T.
    Reynolds, Cbarles F., III
    Carter, Cameron S.
    [J]. AMERICAN JOURNAL OF GERIATRIC PSYCHIATRY, 2009, 17 (01) : 30 - 42
  • [4] Beckmann C. F., 2009, NEUROIMAGE, V47, pS148, DOI [10.1016/s1053-8119(09)71511-3, DOI 10.1016/S1053-8119(09)71511-3, 10.1016/S1053-8119(09)71511-3]
  • [5] Investigations into resting-state connectivity using independent component analysis
    Beckmann, CF
    DeLuca, M
    Devlin, JT
    Smith, SM
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1457) : 1001 - 1013
  • [6] A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
    Behzadi, Yashar
    Restom, Khaled
    Liau, Joy
    Liu, Thomas T.
    [J]. NEUROIMAGE, 2007, 37 (01) : 90 - 101
  • [7] Separating respiratory-variation-related neuronal-activity-related fluctuations in fluctuations from fMRI
    Birn, RM
    Diamond, JB
    Smith, MA
    Bandettini, PA
    [J]. NEUROIMAGE, 2006, 31 (04) : 1536 - 1548
  • [8] FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI
    BISWAL, B
    YETKIN, FZ
    HAUGHTON, VM
    HYDE, JS
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) : 537 - 541
  • [9] Toward discovery science of human brain function
    Biswal, Bharat B.
    Mennes, Maarten
    Zuo, Xi-Nian
    Gohel, Suril
    Kelly, Clare
    Smith, Steve M.
    Beckmann, Christian F.
    Adelstein, Jonathan S.
    Buckner, Randy L.
    Colcombe, Stan
    Dogonowski, Anne-Marie
    Ernst, Monique
    Fair, Damien
    Hampson, Michelle
    Hoptman, Matthew J.
    Hyde, James S.
    Kiviniemi, Vesa J.
    Kotter, Rolf
    Li, Shi-Jiang
    Lin, Ching-Po
    Lowe, Mark J.
    Mackay, Clare
    Madden, David J.
    Madsen, Kristoffer H.
    Margulies, Daniel S.
    Mayberg, Helen S.
    McMahon, Katie
    Monk, Christopher S.
    Mostofsky, Stewart H.
    Nagel, Bonnie J.
    Pekar, James J.
    Peltier, Scott J.
    Petersen, Steven E.
    Riedl, Valentin
    Rombouts, Serge A. R. B.
    Rypma, Bart
    Schlaggar, Bradley L.
    Schmidt, Sein
    Seidler, Rachael D.
    Siegle, Greg J.
    Sorg, Christian
    Teng, Gao-Jun
    Veijola, Juha
    Villringer, Arno
    Walter, Martin
    Wang, Lihong
    Weng, Xu-Chu
    Whitfield-Gabrieli, Susan
    Williamson, Peter
    Windischberger, Christian
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) : 4734 - 4739
  • [10] The brain's default network - Anatomy, function, and relevance to disease
    Buckner, Randy L.
    Andrews-Hanna, Jessica R.
    Schacter, Daniel L.
    [J]. YEAR IN COGNITIVE NEUROSCIENCE 2008, 2008, 1124 : 1 - 38