EXCESS INTERSECTIONS AND A CORRESPONDENCE PRINCIPLE

被引:31
|
作者
VANGASTEL, LJ
机构
[1] Mathematisch Instituut, Rijksuniversiteit Utrecht, Utrecht, NL-3508 TA
关键词
D O I
10.1007/BF01239512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:197 / 221
页数:25
相关论文
共 50 条
  • [1] The correspondence principle
    Ortiz de Urbina, Ricardo Sanchez
    EIKASIA-REVISTA DE FILOSOFIA, 2014, (56): : 9 - 30
  • [2] CORRESPONDENCE PRINCIPLE
    FAY, G
    ACTA PHYSICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1970, 29 (2-3): : 167 - &
  • [3] A correspondence principle
    Hughes, Barry D.
    Ninham, Barry W.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 443 : 495 - 517
  • [4] A principle of correspondence
    Lawrence, E. O.
    SCIENCE, 1926, 64 (1649) : 142 - 142
  • [5] On the Hasse principle for complete intersections
    Northey, Matthew
    Vishe, Pankaj
    COMPOSITIO MATHEMATICA, 2024, 160 (04) : 771 - 835
  • [6] BGG CORRESPONDENCE FOR TORIC COMPLETE INTERSECTIONS
    Baranovsky, Vladimir
    MOSCOW MATHEMATICAL JOURNAL, 2007, 7 (04) : 581 - 599
  • [7] BGG correspondence for projective complete intersections
    Baranovsky, V
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (45) : 2759 - 2774
  • [8] THE GLOBAL CORRESPONDENCE PRINCIPLE
    KEMP, MC
    KIMURA, Y
    TAWADA, M
    ECONOMICS LETTERS, 1990, 34 (01) : 1 - 4
  • [9] CORRESPONDENCE PRINCIPLE DEMONSTRATED
    CHEN, RLW
    RHODES, MB
    AMERICAN JOURNAL OF PHYSICS, 1984, 52 (11) : 988 - 992
  • [10] Complex Correspondence Principle
    Bender, Carl M.
    Hook, Daniel W.
    Meisinger, Peter N.
    Wang, Qing-hai
    PHYSICAL REVIEW LETTERS, 2010, 104 (06)