IS THERE A EUCLIDEAN FIELD-THEORY FOR FERMIONS

被引:0
作者
FROHLICH, J [1 ]
OSTERWALDER, K [1 ]
机构
[1] HARVARD UNIV,JEFFERSON LAB PHYS,CAMBRIDGE,MA 02138
来源
HELVETICA PHYSICA ACTA | 1974年 / 47卷 / 06期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:781 / 805
页数:25
相关论文
共 50 条
[21]   A LIPATOV BOUND FOR PHI-44 EUCLIDEAN FIELD-THEORY [J].
MAGNEN, J ;
NICOLO, F ;
RIVASSEAU, V ;
SENEOR, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (02) :257-289
[22]   FINITE MASS RENORMALIZATIONS IN EUCLIDEAN YUKAWA2 FIELD-THEORY [J].
MCBRYAN, OA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (03) :237-243
[24]   N-PARTICLE-IRREDUCIBLE FUNCTIONS IN EUCLIDEAN QUANTUM FIELD-THEORY [J].
COMBESCURE, M ;
DUNLOP, F .
ANNALS OF PHYSICS, 1979, 122 (01) :102-150
[25]   BOUNDARY-CONDITIONS FOR P(PHI)2 EUCLIDEAN FIELD-THEORY [J].
GUERRA, F ;
ROSEN, L ;
SIMON, B .
ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1976, 25 (03) :231-334
[26]   HYPERFUNCTION QUANTUM FIELD-THEORY .2. EUCLIDEAN GREENS FUNCTIONS [J].
NAGAMACHI, S ;
MUGIBAYASHI, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 49 (03) :257-275
[27]   CONFORMAL FIELD-THEORY AND THE SYMMETRIES OF STRING FIELD-THEORY [J].
HOROWITZ, GT ;
MARTIN, SP .
NUCLEAR PHYSICS B, 1988, 296 (01) :220-252
[28]   EMBEDDING LATTICE FIELD-THEORY IN CONTINUUM FIELD-THEORY [J].
BRONZAN, JB .
PHYSICAL REVIEW D, 1980, 21 (08) :2270-2279
[29]   SOME REMARKS ON FROHLICHS CONDITION IN P(PHI)-2 EUCLIDEAN FIELD-THEORY [J].
KISHIMOTO, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 47 (02) :117-129
[30]   NON-CLASSICAL CONFIGURATIONS IN EUCLIDEAN FIELD-THEORY AS MINIMA OF CONSTRAINED SYSTEMS [J].
GERVAIS, JL ;
NEVEU, A ;
VIRASORO, MA .
NUCLEAR PHYSICS B, 1978, 138 (01) :45-72