ON QUANTUM SPACES OF LIE-ALGEBRAS

被引:21
作者
LEBRUYN, L [1 ]
VANDENBERGH, M [1 ]
机构
[1] INST HAUTES ETUD SCI,F-91440 BURES SUR YVETTE,FRANCE
关键词
D O I
10.2307/2159921
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The homogenization H(g) of the enveloping algebra of a finite dimensional Lie algebra g is an Artin-Schelter regular algebra. We characterize d-dimensional linear subspaces in the corresponding quantum space P(q)(g) as homogenizations of induced representations from codimension d Lie subalgebras. Furthermore we prove that the point variety has an embedded component iff there is a line, not contained in this point variety.
引用
收藏
页码:407 / 414
页数:8
相关论文
共 9 条
[1]   GRADED ALGEBRAS OF GLOBAL DIMENSION-3 [J].
ARTIN, M ;
SCHELTER, WF .
ADVANCES IN MATHEMATICS, 1987, 66 (02) :171-216
[2]  
ARTIN M, 1990, GEOMETRY QUANTUM PLA
[3]  
ASCENSIO MJ, 1989, T AM MATH SOC, V316, P537
[4]  
Dixmier J., 1977, ALGEBRAS
[5]   CHARACTERISTIC VARIETIES AND VANISHING CYCLES [J].
GINSBURG, V .
INVENTIONES MATHEMATICAE, 1986, 84 (02) :327-402
[6]  
HUISHI L, IN PRESS MONOGRAPH
[7]  
LEBRUYN L, IN PRESS P AM MATH S
[8]  
LEVASSEUR T, IN PRESS P EDINBURGH
[9]  
[No title captured]