ON AN INTRIGUING INTEGRAL AND SOME SERIES RELATED TO ZETA(4)

被引:75
作者
BORWEIN, D [1 ]
BORWEIN, JM [1 ]
机构
[1] SIMON FRASER UNIV,DEPT MATH & STAT,BURNABY,BC V5A 1S6,CANADA
关键词
RIEMANN ZETA FUNCTION; PARSEVALS IDENTITY; GENERATING FUNCTIONS; LOGCOSINE INTEGRALS; POLYLOGARITHMS;
D O I
10.2307/2160718
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An intriguing log-cosine integral is fully analyzed and shown to have value a rational multiple of pi zeta(4), zeta being the Riemann zeta function. From this we deduce by means of generating functions and Parseval's identity the sums of certain series previously established by a completely different method.
引用
收藏
页码:1191 / 1198
页数:8
相关论文
共 50 条
[41]   Mathieu series and associated sums involving the Zeta functions [J].
Choi, Junesang ;
Srivastava, H. M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (02) :861-867
[42]   Moments of the Riemann zeta function and Eisenstein series - I [J].
Beineke, J ;
Bump, D .
JOURNAL OF NUMBER THEORY, 2004, 105 (01) :150-174
[43]   Sums of infinite series involving the Riemann zeta function [J].
Mortini, Raymond ;
Rupp, Rudolf .
ARCHIV DER MATHEMATIK, 2024, :163-172
[44]   Geometric polynomials: properties and applications to series with zeta values [J].
Kh. N. Boyadzhiev ;
A. Dil .
Analysis Mathematica, 2016, 42 :203-224
[45]   Infinite Series Concerning Tails of Riemann Zeta Values [J].
Li, Chunli ;
Chu, Wenchang .
AXIOMS, 2023, 12 (08)
[46]   Geometric polynomials: properties and applications to series with zeta values [J].
Boyadzhiev, Kh. N. ;
Dil, A. .
ANALYSIS MATHEMATICA, 2016, 42 (03) :203-224
[47]   ON A RAPIDLY CONVERGING SERIES FOR THE RIEMANN'S ZETA FUNCTION [J].
Pichler, Alois .
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2012, 26 (01) :75-101
[48]   Some closed formulae for the Riemann Zeta function [J].
Zheng, De-Yin .
UTILITAS MATHEMATICA, 2007, 72 :211-222
[49]   A note on convexity properties of functions related to the Hurwitz zeta and alternating Hurwitz zeta function [J].
Cvijovic, Djurdje .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (01)
[50]   Some extensions of the Fermi-Dirac and Bose-Einstein functions with applications to the family of the zeta and related functions [J].
H. M. Srivastava ;
M. A. Chaudhry ;
A. Qadir ;
A. Tassaddiq .
Russian Journal of Mathematical Physics, 2011, 18 :107-121