MULTILINEAR POLYNOMIALS AND FRANKL-RAY-CHAUDHURI-WILSON TYPE INTERSECTION-THEOREMS

被引:72
作者
ALON, N
BABAI, L
SUZUKI, H
机构
[1] EOTVOS LORAND UNIV, DEPT ALGEBRA, H-1088 BUDAPEST, HUNGARY
[2] UNIV CHICAGO, DEPT COMP SCI, CHICAGO, IL 60637 USA
[3] OSAKA KYOIKU UNIV, DEPT MATH, OSAKA 543, JAPAN
[4] BELL COMMUN RES INC, MORRISTOWN, NJ 07960 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0097-3165(91)90058-O
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a very simple new proof of the celebrated intersection theorem of D. K. Ray-Chaudhuri and R. M. Wilson. The new proof yields a generalization to nonuniform set systems. Let N(n,s,r) = ( n s) + ( n s-1) + ⋯( n s-r+1).Generalized Ray-Chaudhuri-Wilson Theorem. Let K = {k1,...,kr}, L = {l1,...,ls}, and assume ki > s - r for all i. Let F be a family of subsets of an n-element set. Suppose that |F| ε{lunate} K for each F ε{lunate} F; and |E ∩ F| ε{lunate} L for each pair of distinct sets E, F ε{lunate} F. Then |F| ≤ N(n, s, r). The proof easily generalizes to equicardinal. © 1991.
引用
收藏
页码:165 / 180
页数:16
相关论文
共 18 条
[1]  
[Anonymous], 1979, COMBINATORIAL THEORY
[2]   A SHORT PROOF OF THE NONUNIFORM RAY-CHAUDHURI-WILSON INEQUALITY [J].
BABAI, L .
COMBINATORICA, 1988, 8 (01) :133-135
[3]  
Babai L., 1988, LINEAR ALGEBRA METHO
[4]   AN UPPER BOUND FOR THE CARDINALITY OF AN S-DISTANCE SUBSET IN REAL EUCLIDEAN-SPACE .2. [J].
BANNAI, E ;
BANNAI, E ;
STANTON, D .
COMBINATORICA, 1983, 3 (02) :147-152
[5]  
BLOKHUIS A, MEM198104 EINDH U TE
[6]  
Delsarte P., 1977, GEOMETRIAE DEDICATA, V6, P363, DOI DOI 10.1007/BF03187604
[7]  
FAIGLE U, 1986, THEORY MATROIDS, P54
[8]   INTERSECTION-THEOREMS WITH GEOMETRIC CONSEQUENCES [J].
FRANKL, P ;
WILSON, RM .
COMBINATORICA, 1981, 1 (04) :357-368
[9]  
Frankl P., 1985, EUR J COMBIN, V6, P183, DOI DOI 10.1016/S0195-6698(85)80009-3
[10]  
GODSIL C, 1988, DISCRETE MATH, V73, P71