A WAVELET OPERATOR ON THE INTERVAL IN SOLVING MAXWELL'S EQUATIONS

被引:7
作者
Ala, G. [1 ]
Francomano, E. [2 ]
Viola, F. [1 ]
机构
[1] Univ Palermo, Dipartimento Ingn Elettr Elettron & Telecomunicaz, Tecnol Chim Automat & Modelli Matemat, Viale Sci, I-90128 Palermo, Italy
[2] Univ Palermo, Dipartimento Ingn Chim, Gest, Informat,Meccan, I-90128 Palermo, Italy
来源
PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS | 2011年 / 27卷
关键词
Discrete wavelet transforms - Electromagnetic fields;
D O I
10.2528/PIERL11090505
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a differential wavelet-based operator defined on an interval is presented and used in evaluating the electromagnetic field described by Maxwell's curl equations, in time domain. The wavelet operator has been generated by using Daubechies wavelets with boundary functions. A spatial differential scheme has been performed and it has been applied in studying electromagnetic phenomena in a lossless medium. The proposed approach has been successfully tested on a bounded axial-symmetric cylindrical domain.
引用
收藏
页码:133 / 140
页数:8
相关论文
共 14 条
[1]  
Beylkin G., On the representation of operators in bases of compactly supported wavelets, SIAM J. Numer. Anal., 6, 6, pp. 1716-1740, (1992)
[2]  
Beylkin G., Wavelets and fast numerical algorithms, Lecture Notes for Short Course {pipe} Proceedings of Symposia in Applied Mathematics, 47, pp. 89-117, (1993)
[3]  
Cohen A., Daubechies I., Vial P., Multiresolution analysis, wavelets and fast algorithms on an interval, Appl. Comput. Harmon. Anal., 1, pp. 100-115, (1993)
[4]  
Cohen A., Daubechies I., Vial P., Wavelets on the interval and fast wavelet transform, Appl. Comput. Harmon. Anal., 1, pp. 54-81, (1993)
[5]  
Jameson L., On the Daubechies-based Wavelets Differentiation Matrix, (1995)
[6]  
Jameson L., The differentiation matrix for Daubechies-based wavelets on a interval, SIAM J. Numer. Anal., 17, 2, pp. 98-516, (1996)
[7]  
Barmada S., Raugi M., A general tool for circuit analysis based on wavelet transform, Int. J. Circ. Theor. Appl., 28, pp. 461-480, (2000)
[8]  
Barmada S., Raugi M., Space-time wavelet expansion iterative solution of non-uniform transmission line with arbitrary loads, Int. J. Circ. Theor. Appl., 14, pp. 219-235, (2001)
[9]  
Barmada S., Musolino A., Raugi M., Wavelet-based time-domain solution of multiconductor transmission lines with skin and proximity effect, IEEE Trans. Electromagn. Compat., 47, pp. 774-780, (2005)
[10]  
Barmada S., Musolino A., Raugi M., Analysis of Integrated circuit systems by an innovative wavelet-based scattering matrix approach, IEEE Trans. Adv. Pack., 30, pp. 86-96, (2007)