THE GENERALIZATION OF VORONOVSKAJA'S THEOREM FOR A CLASS OF BIVARIATE OPERATORS

被引:0
|
作者
Pop, Ovidiu T. [1 ,2 ]
机构
[1] Natl Coll Mihai Eminescu, 5 Mihai Eminescu St, Satu Mare 440014, Romania
[2] Vest Univ Vasile Goldis Arad, Branch Satu Mare, Satu Mare 440030, Romania
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2008年 / 53卷 / 02期
关键词
linear positive operators; bivariate operators of Bernstein; Schurer; Durrmeyer; Kantorovich; Stancu and Bleimann; Butzer and Hahn; degree of approximation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we generalize Voronovakaja's theorem and we give an approximation property for a class of bivariate operators and then, through particular cases, we obtain statements verified by the bivariate operators of Bernstein, Schurer, Durrmeyer, Kantorovich, Stancu and Bleimann, Butzer and Hahn.
引用
收藏
页码:85 / 107
页数:23
相关论文
共 45 条
  • [1] The Voronovskaja type theorem for an extension of Kantorovich operators
    Miclaus, Dan
    Pop, Ovidiu T.
    Barbosu, Dan
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2010, 37 (04): : 29 - 36
  • [2] Voronovskaja's theorem revisited
    Tachev, Gancho T.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) : 399 - 404
  • [3] VORONOVSKAJA-TYPE THEOREM FOR CERTAIN GBS OPERATORS
    Pop, Ovidiu T.
    GLASNIK MATEMATICKI, 2008, 43 (01) : 179 - 194
  • [4] VORONOVSKAJA'S THEOREM FOR SCHOENBERG OPERATOR
    Tachev, Gancho
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (01): : 49 - 59
  • [5] New estimates in Voronovskaja's theorem
    Tachev, Gancho
    NUMERICAL ALGORITHMS, 2012, 59 (01) : 119 - 129
  • [6] New estimates in Voronovskaja’s theorem
    Gancho Tachev
    Numerical Algorithms, 2012, 59 : 119 - 129
  • [7] Voronovskaja's theorem for functions with exponential growth
    Tachev, Gancho
    Gupta, Vijay
    Aral, Ali
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (03) : 459 - 468
  • [8] A Voronovskaja type formula for Soardi's operators
    Abel, Ulrich
    Rasa, Ioan
    POSITIVITY, 2022, 26 (03)
  • [9] ON THE BIVARIATE GENERALIZATION OF BERNSTEIN-FOMIN OPERATORS
    Ghorbanalizadeh, Arash
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2018, 44 (02): : 209 - 221
  • [10] A Voronovskaja type formula for Soardi’s operators
    Ulrich Abel
    Ioan Raşa
    Positivity, 2022, 26