BETTI NUMBERS OF MULTIGRADED MODULES

被引:23
作者
CHARALAMBOUS, H
机构
[1] Department of Mathematics, University of Illinois, Urbana
关键词
D O I
10.1016/0021-8693(91)90103-F
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we deal with lower bounds for the Betti numbers of multigaded modules over R = k[x1,..., xd]. In general the ith Betti number of a finite length multigraded module must be at least the binomial coefficient ( d i). This is achieved only when the module in question is isomorphic to R modulo a maximal R-sequence. Otherwise the lower bound for each i is increased either by ( d-1 i) or by ( d-1 i-1). If M is an arbitrary multigraded module and s is the length of a maximal R sequence in the annihilator of M then similar inequalities hold for the Betti numbers of M with d replaced by d-s. © 1991.
引用
收藏
页码:491 / 500
页数:10
相关论文
共 9 条
[1]  
Bass H, 1963, MATH Z, V82, P8, DOI DOI 10.1007/BF01112819
[2]  
BOURBAKI N, 1972, ELEMENTS MATH COMMUT, V4, P283
[3]   ALGEBRA STRUCTURES FOR FINITE FREE RESOLUTIONS, AND SOME STRUCTURE THEOREMS FOR IDEALS OF CODIMENSION .3. [J].
BUCHSBAUM, DA ;
EISENBUD, D .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (03) :447-485
[4]  
CHARALAMBOUS H, 1990, P AM MATH SOC, V109
[5]   BINOMIAL BEHAVIOR OF BETTI NUMBERS FOR MODULES OF FINITE LENGTH [J].
EVANS, EG ;
GRIFFITH, P .
PACIFIC JOURNAL OF MATHEMATICS, 1988, 133 (02) :267-276
[6]   ALGEBRAIC VECTOR BUNDLES ON PROJECTIVE SPACES - PROBLEM LIST [J].
HARTSHORNE, R .
TOPOLOGY, 1979, 18 (02) :117-128
[7]  
Rotman J. J., 1979, INTRO HOMOLOGICAL AL
[8]  
SANTONI L, IN PRESS PACIFIC J M
[9]  
Tate J., 1957, ILLINOIS J MATH, V1, P14