A NUMERICAL INVESTIGATION OF DUCTILE FRACTURE INITIATION IN A HIGH-STRENGTH LOW-ALLOY STEEL

被引:6
作者
NARASIMHAN, R [1 ]
KAMAT, SV [1 ]
机构
[1] DEF MET RES LAB,HYDERABAD 500258,INDIA
关键词
DUCTILE FRACTURE; FINITE ELEMENTS; IMPACT LOADING;
D O I
10.1007/BF02745178
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, static and drop-weight impact experiments, which have been conducted using three-point bend fracture specimens of a high-strength low-alloy steel, are analysed by performing finite-element simulations. The Gurson constitutive model that accounts for the ductile failure mechanisms of microvoid nucleation, growth and is employed within the framework of a finite deformation plasticity theory. Two populations of second-phase particles are considered, including large inclusions which initiate voids at an early stage and small particles which require large strains to nucleate voids. The most important objective of the work is to assess quantitatively the effects of material inertia, strain rate sensitivity and local adiabatic temperature rise (due to conversion of plastic work into heat) on dynamic ductile crack initiation. This is accomplished by comparing the evolution histories of void volume fraction near the notch tip in the static analysis with the dynamic analyses. The results indicate that increased strain hardening caused by strain rate sensitivity, which becomes important under dynamic loading, plays a benign role in considerably slowing down the void growth rate near the notch tip. This is partially opposed by thermal softening caused by adiabatic heating near the notch tip.
引用
收藏
页码:259 / 282
页数:24
相关论文
共 50 条
[31]   Fracture behavior of high-strength bolted steel connections at elevated temperatures [J].
Cai, Wen-Yu ;
Jiang, Jian ;
Li, Guo-Qiang ;
Wang, Yan-Bo .
ENGINEERING STRUCTURES, 2021, 245
[32]   Experimental and numerical investigation on cyclic mechanical properties of high-strength steel (HSS) after corrosion damage [J].
Han, Wenbing ;
Nie, Shidong ;
Wang, Yuansheng ;
Liu, Min ;
Chen, Zhenye ;
Chen, Jieyu ;
Yang, Bo ;
Elchalakani, Mohamed .
JOURNAL OF BUILDING ENGINEERING, 2024, 97
[33]   Prediction of ductile fracture for advanced high strength steel with a new criterion: Experiments and simulation [J].
Lou, Yanshan ;
Huh, Hoon .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2013, 213 (08) :1284-1302
[34]   Influence of Inclusion Morphology on Impact Fracture Behavior in High-Strength Pipeline Steel [J].
Duan, Qiang ;
Fu, Bin ;
Pan, Hongbo ;
Yang, Jun .
TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2020, 73 (07) :1899-1907
[35]   Experimental and numerical investigation on ductile fracture mechanism of aluminium alloy using new modified model [J].
Zhao, R. ;
Zhao, S. ;
Guo, J. ;
Zhong, B. ;
Li, J. .
MATERIALS SCIENCE AND TECHNOLOGY, 2015, 31 (03) :303-309
[36]   Numerical simulations of fracture initiation in ductile solids under mode I, dynamic loading [J].
R Narasimhan ;
S Basu .
Bulletin of Materials Science, 1999, 22 :891-900
[37]   Numerical simulations of fracture initiation in ductile solids under mode I, dynamic loading [J].
Narasimhan, R ;
Basu, S .
BULLETIN OF MATERIALS SCIENCE, 1999, 22 (05) :891-900
[38]   Numerical Investigation on Fracture Initiation Properties of Interface Crack in Dissimilar Steel Welded Joints [J].
Zhao, Longfei ;
Shao, Chendong ;
Takashima, Yasuhito ;
Minami, Fumiyoshi ;
Lu, Fenggui .
CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2020, 33 (01)
[39]   Ultra-low Cycle Fatigue Fracture of High-Strength Steel Q460C and Its Weld [J].
Yin, Fei ;
Yang, Lu ;
Zong, Liang ;
Liu, Xiyue ;
Wang, Yuanqing .
JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2018, 30 (11)
[40]   Numerical simulations of ductile crack initiation and growth in a textured magnesium alloy [J].
Sreedhar, S. Arjun ;
Narasimhan, R. .
MECHANICS OF MATERIALS, 2024, 190