Stability of non-Markovian polling systems

被引:7
|
作者
Massoulie, L
机构
[1] Laboratoire des Signaux et Systèmes, CNRS-ESE, Plateau de Moulon, Gif-sur-Yvette
关键词
polling systems; stability; stationary regime;
D O I
10.1007/BF01158575
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A stationary regime for polling systems with general ergodic (G/G) arrival processes at each station is constructed. Mutual independence of the arrival processes is not required. It is shown that the stationary workload so constructed is minimal in the stochastic ordering sense. In the model considered the server switches from station to station in a Markovian fashion, and a specific service policy is applied to each queue. Our hypotheses cover the purely gated, the a-limited, the binomial-gated and other policies. As a by-product we obtain sufficient conditions for the stationary regime of a G/G/1/infinity queue with multiple server vacations (see Doshi [11]) to be ergodic.
引用
收藏
页码:67 / 95
页数:29
相关论文
共 50 条
  • [1] Stability of non-Markovian polling systems
    Queueing Syst, 1-2 (67):
  • [2] SIMULATION OF NON-MARKOVIAN SYSTEMS
    IGLEHART, DL
    SHEDLER, GS
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1983, 27 (05) : 472 - 480
  • [3] Markovian Embeddings of Non-Markovian Quantum Systems: Coupled Stochastic and Quantum Master Equations for Non-Markovian Quantum Systems
    Nurdin, Hendra I.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 5939 - 5944
  • [4] Non-Markovian Speedup Dynamics in Markovian and Non-Markovian Channels
    Jing Nie
    Yingshuang Liang
    Biao Wang
    Xiuyi Yang
    International Journal of Theoretical Physics, 2021, 60 : 2889 - 2900
  • [5] Non-Markovian Speedup Dynamics in Markovian and Non-Markovian Channels
    Nie, Jing
    Liang, Yingshuang
    Wang, Biao
    Yang, Xiuyi
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (08) : 2889 - 2900
  • [6] Dynamics of fluctuations in non-Markovian systems
    Alonso, Daniel
    de Vega, Ines
    Hernandez-Concepcion, Ethel
    COMPTES RENDUS PHYSIQUE, 2007, 8 (5-6) : 684 - 695
  • [7] SIMULATION OF NON-MARKOVIAN SYSTEMS.
    Iglehart, Donald L.
    Shedler, Gerald S.
    1600, (27):
  • [8] Modeling for Non-Markovian Quantum Systems
    Xue, Shibei
    Nguyen, Thien
    James, Matthew R.
    Shabani, Alireza
    Ugrinovskii, Valery
    Petersen, Ian R.
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (06) : 2564 - 2571
  • [9] ON SYSTEMS WITH NON-MARKOVIAN REGIME CHANGES
    MARITON, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (03) : 346 - 349
  • [10] NON-MARKOVIAN DYNAMICS OF QUANTUM SYSTEMS
    Chruscinski, Dariusz
    Kossakowski, Andrzej
    QUANTUM BIO-INFORMATICS IV: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2011, 28 : 91 - 99