UNIQUENESS AND REGULARITY OF PROPER HARMONIC MAPS-II

被引:47
作者
LI, P
TAM, LF
机构
关键词
D O I
10.1512/iumj.1993.42.42027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a continuation of [L-T2] of the study of harmonic maps between hyperbolic spaces. In this paper, we prove a uniqueness theorem on quasi-conformal harmonic diffeomorphisms of H-2. We also construct many harmonic maps on H(m) with the same general boundary data on the geometric boundary of H(m). We improve the regularity and existence results in [L-T2] so that in some sense they are optimal.
引用
收藏
页码:591 / 635
页数:45
相关论文
共 20 条
[1]  
AHLFORS LV, 1966, LECTURES QUASICONFOR
[2]   THE BOUNDARY CORRESPONDENCE UNDER QUASICON-FORMAL MAPPINGS [J].
BEURLING, A ;
AHLFORS, L .
ACTA MATHEMATICA, 1956, 96 (1-2) :125-142
[3]  
Cheng S.Y., 1980, P S PURE MATH, VXXXVI, P147
[4]  
Ding W. Y., 1991, INT J MATH, V2, P617
[5]  
ECONOMAKIS M, COUNTEREXAMPLE UNIQU
[6]  
Gilbarg D., 1977, ELLIPTIC PARTIAL DIF
[7]  
GRAHAM CR, 1983, COMMUN PART DIFF EQ, V8, P433
[8]   THE DIRICHLET PROBLEM FOR THE BERGMAN LAPLACIAN .2. [J].
GRAHAM, CR .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1983, 8 (06) :563-641
[9]   UNIQUENESS OF HARMONIC MAPPINGS AND OF SOLUTIONS OF ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLDS [J].
JAGER, W ;
KAUL, H .
MATHEMATISCHE ANNALEN, 1979, 240 (03) :231-250
[10]   BOUNDARY-BEHAVIOR OF THE COMPLEX MONGE-AMPERE EQUATION [J].
LEE, J ;
MELROSE, R .
ACTA MATHEMATICA, 1982, 148 :159-192