Using Genetic Algorithms to Explore Pattern Recognition in the Immune System

被引:142
作者
Forrest, Stephanie [1 ]
Javornik, Brenda [1 ]
Smith, Robert E. [2 ]
Perelson, Alan S. [3 ]
机构
[1] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA
[2] Univ Alabama, Dept Engn Mech, Tuscaloosa, AL 35487 USA
[3] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
genetic algorithms; immune system; pattern recognition; fitness sharing;
D O I
10.1162/evco.1993.1.3.191
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes an immune system model based on binary strings. The purpose of the model is to study the pattern-recognition processes and learning that take place at both the individual and species levels in the immune system. The genetic algorithm (GA) is a central component of the model. The paper reports simulation experiments on two-pattern-recognition problems that are relevant to natural immune systems. Finally, it reviews the relation between the model and explicit fitness-sharing techniques for genetic algorithms, showing that the immune system model implements a form of implicit fitness sharing.
引用
收藏
页码:191 / 211
页数:21
相关论文
共 17 条
[1]  
[Anonymous], 1959, CLONAL SELECTION THE, DOI DOI 10.5962/BHL.TITLE.8281
[2]   THE DYNAMIC NATURE OF THE ANTIBODY REPERTOIRE [J].
BEREK, C ;
MILSTEIN, C .
IMMUNOLOGICAL REVIEWS, 1988, 105 :5-26
[3]   T-CELL ANTIGEN RECEPTOR GENES AND T-CELL RECOGNITION [J].
DAVIS, MM ;
BJORKMAN, PJ .
NATURE, 1988, 334 (6181) :395-402
[4]  
Deb K., 1989, 89002 TCGA U AL
[5]   THE IMMUNE-SYSTEM, ADAPTATION, AND MACHINE LEARNING [J].
FARMER, JD ;
PACKARD, NH ;
PERELSON, AS .
PHYSICA D-NONLINEAR PHENOMENA, 1986, 22 (1-3) :187-204
[6]  
Forrest S., 1991, LECT NOTES COMPUTER
[7]  
Goldberg DE, 1989, GENETIC ALGORITHMS S
[8]  
Grefenstette J., 1984, P 1984 C INT SYST MA, P161
[9]  
Hightower R., 1993, P 2 EUR C ART LIF U
[10]  
Holland J. H., 1989, INDUCTION PROCESSES