INVARIANTS OF ALMOST COMMUTING UNITARIES

被引:75
作者
EXEL, R [1 ]
LORING, TA [1 ]
机构
[1] DALHOUSIE UNIV,DEPT MATH STAT & COMP SCI,HALIFAX B3H 3J5,NS,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0022-1236(91)90034-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two invariants of pairs of almost commuting unitary matrices have been defined and used to identify those pairs which are bounded away from commuting pairs. The first, denoted k(U, V) for unitaries U,Vε{lunate}Mn(C), involved K-theory, while the second was defined via winding numbers. We show that these invariants coincide. We also establish some upper bounds on |k(U, V)|. © 1991.
引用
收藏
页码:364 / 376
页数:13
相关论文
共 9 条
[1]   SHORT NORMAL PATHS AND SPECTRAL VARIATION [J].
BHATIA, R ;
HOLBROOK, JAR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 94 (03) :377-382
[2]  
ELLIOTT GA, EF EMBEDDINGS C T2 P
[3]   ALMOST COMMUTING UNITARY MATRICES [J].
EXEL, R ;
LORING, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (04) :913-915
[4]  
EXEL R, IN PRESS T AM MATH S
[5]  
Kato T., 1966, PERTURBATION THEORY
[6]   K-THEORY AND ASYMPTOTICALLY COMMUTING MATRICES [J].
LORING, TA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1988, 40 (01) :197-216
[7]  
LORING TA, IN PRESS K THEORY AF
[8]  
VOICULESCU D, 1983, ACTA SCI MATH, V45, P429
[9]  
[No title captured]