OPTIMAL AMORTIZED DISTRIBUTED CONSENSUS

被引:8
作者
BARNOY, A [1 ]
DENG, X [1 ]
GARAY, JA [1 ]
KAMEDA, T [1 ]
机构
[1] SIMON FRASER UNIV,SCH COMP SCI,BURNABY,BC V5A 1S6,CANADA
关键词
D O I
10.1006/inco.1995.1101
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we study the behavior of deterministic algorithms when consensus is needed repeatedly, say k times. We show that it is possible to achieve consensus with the optimal number of processors (n > 3t), and when k is large enough, with optimal amortized cost in all other measures: the number of communication rounds r*, the maximal message size m*, and the total bit complexity b*. More specifically, we achieve the following amortized bounds for k consensus instances: r* = O(1 + t/k), b* = O(nt + nt(3)/k), and m* = O(1 + t(2)/k). When k greater than or equal to t(2), then r* and m* are O(1) and b*=O(nt), which is optimal. (C) 1995 Academic Press, Inc.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 11 条
[1]   SHIFTING GEARS - CHANGING ALGORITHMS ON THE FLY TO EXPEDITE BYZANTINE AGREEMENT [J].
BARNOY, A ;
DOLEV, D ;
DWORK, C ;
STRONG, HR .
INFORMATION AND COMPUTATION, 1992, 97 (02) :205-233
[2]   CONSENSUS ALGORITHMS WITH ONE-BIT MESSAGES [J].
BARNOY, A ;
DOLEV, D .
DISTRIBUTED COMPUTING, 1991, 4 (03) :105-110
[3]  
BENOR M, UNPUB INTERACTIVE CO
[4]  
BERMAN P, 1992, LECT NOTES COMPUT SC, V647, P221
[5]  
BERMAN P, 1991, LECTURE NOTES COMPUT, V579, P129
[6]   EARLY STOPPING IN BYZANTINE AGREEMENT [J].
DOLEV, D ;
REISCHUK, R ;
STRONG, HR .
JOURNAL OF THE ACM, 1990, 37 (04) :720-741
[7]   BOUNDS ON INFORMATION EXCHANGE FOR BYZANTINE AGREEMENT [J].
DOLEV, D ;
REISCHUK, R .
JOURNAL OF THE ACM, 1985, 32 (01) :191-204
[8]  
FELDMAN P, 1988, 20TH P S THEOR COMP, P148
[9]   A LOWER BOUND FOR THE TIME TO ASSURE INTERACTIVE CONSISTENCY [J].
FISCHER, MJ ;
LYNCH, NA .
INFORMATION PROCESSING LETTERS, 1982, 14 (04) :183-186
[10]  
HADZILACOS V, 1991, MATH SYST THEORY, V26, P41