ON BANDTS TANGENTIAL DISTRIBUTION FOR SELF-SIMILAR MEASURES

被引:60
作者
GRAF, S
机构
[1] Fakultät für Mathematik und Informatik, Universität Passau, Passau, D-94032
来源
MONATSHEFTE FUR MATHEMATIK | 1995年 / 120卷 / 3-4期
关键词
SELF-SIMILAR MEASURE; OPEN SET CONDITION; AVERAGE DENSITY; TANGENTIAL DISTRIBUTION; AVERAGE TANGENTIAL MEASURE;
D O I
10.1007/BF01294859
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the local geometry of a self-similar measure mu as captured by Bandt's average tangential distribution is the same at mu-almost all points of the underlying space. Moreover, for a self-similar measure explicit formulas for Bandt's tangential distribution as well as for the average density of Bedford and Fisher are derived.
引用
收藏
页码:223 / 246
页数:24
相关论文
共 20 条
[1]  
ARBEITER M, 1994, RANDOM SELF SIMILAR
[2]  
BAUER H, 1968, WAHRSCHEINLICHKEITST
[3]  
BEDFORD T, 1992, P LOND MATH SOC, V64, P95
[4]  
BNDT C, 1992, 5TH C REAL ANAL MEAS
[5]  
CAWLEY R, 1992, ADV MATH, V92, P126
[6]   WAVELET TRANSFORMS AND ORDER-2 DENSITIES OF FRACTALS [J].
FALCONER, KJ .
JOURNAL OF STATISTICAL PHYSICS, 1992, 67 (3-4) :781-793
[7]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[8]  
Parthasarathy K. R., 1967, PROBABILITY MEASURES, V3
[9]   FRACTIONAL DIFFERENTIATION IN THE SELF-AFFINE CASE-III - THE DENSITY OF THE CANTOR SET [J].
PATZSCHKE, N ;
ZAHLE, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (01) :137-144
[10]   FRACTIONAL DIFFERENTIATION IN THE SELF-AFFINE CASE .1. RANDOM FUNCTIONS [J].
PATZSCHKE, N ;
ZAHLE, M .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 43 (01) :165-175