QUANTIFIER ELIMINATION FOR HENSELIAN FIELDS RELATIVE TO ADDITIVE AND MULTIPLICATIVE CONGRUENCES

被引:22
作者
KUHLMANN, FV
机构
[1] Mathematisches Institut der Universität, Heidelberg 1, W-6900
关键词
D O I
10.1007/BF02758645
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several classes of henselian valued fields admit quantifier elimination relative to structures which reflect the additive and multiplicative congruences of the field. Value groups and residue fields may be viewed as reducts of these structures. A general theorem is given using the theory of tame extensions of henselian fields. Special cases like the case of p-adically closed fields and the case of henselian fields of residue characteristic 0 are discussed.
引用
收藏
页码:277 / 306
页数:30
相关论文
共 19 条
[1]   RELATIVE ELIMINATION OF QUANTIFIERS FOR HENSELIAN VALUED FIELDS [J].
BASARAB, SA .
ANNALS OF PURE AND APPLIED LOGIC, 1991, 53 (01) :51-74
[2]  
BASARAB SA, 1992, ISOMORPHISM THEOREM
[3]  
CHANG C. C., 1973, MODEL THEORY
[4]  
DELON F, 1981, QUELQUES PROPRIETES
[5]  
KOENIGSMANN J, UNPUB QUANTIFIER ELI
[6]   IMMEDIATE AND PURELY WILD EXTENSIONS OF VALUED FIELDS [J].
KUHLMANN, FV ;
PANK, M ;
ROQUETTE, P .
MANUSCRIPTA MATHEMATICA, 1986, 55 (01) :39-67
[7]  
KUHLMANN FV, IN PRESS ALGEBRA LOG
[8]  
KUHLMANN FV, 1990, HANSELIAN FUNCTION F
[9]   DEFINABLE SUBSETS OF PARA-ADIC FIELDS [J].
MACINTYRE, A .
JOURNAL OF SYMBOLIC LOGIC, 1976, 41 (03) :605-610
[10]  
PRESTEL A, 1978, J REINE ANGEW MATH, V299, P318