CONSTITUVE MODELLING FOR CREEP OF DRAWN COPPER WIRE

被引:1
|
作者
Boumerzoug, Zakaria [1 ]
Gareh, Salim [2 ]
机构
[1] Univ Biskra, LMSM, Biskra 07000, Algeria
[2] Univ Biskra, Fac Technol, Dept Mech Engn, Biskra 07000, Algeria
来源
ACTA METALLURGICA SLOVACA | 2014年 / 20卷 / 04期
关键词
creep deformation; drawn copper wire; creep constitutive model;
D O I
10.12776/ams.v20i4.411
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The high- temperature creep behaviour of drawn copper wire was studied by different constant stresses 98,108 and 118 MPa and under the temperatures of 250, 290 and 340 degrees C. This study deals with the creep based prediction modelling of an industrial copper wire. The proposed unified creep damage constitutive equations were determined using experimental data achieved for materials at applied stress. The comparison of experimental and predicted effective creep strain curves is carried out for all applied stresses applied on the drawn copper wire. The evaluated stress exponent n = 9.21, 10 and 14 and the activation energy Q = 22.25, 31.75 and 50.75 indicated that the creep deformation of the drawn copper wire is controlled by the dislocation creep. The evaluated of the mean relative error from 5.18 % to 10.11 confirmed the creep strain predicted by the proposed model well agree with experimental data.
引用
收藏
页码:358 / 365
页数:8
相关论文
共 13 条
  • [1] Inhomogeneities of deformation and annealing textures in a 90% drawn electrolytic copper wire
    Park, H
    Lee, DN
    RECRYSTALLIZATION AND GRAIN GROWTH, VOLS 1 AND 2, 2001, : 1377 - 1382
  • [2] Basic modelling of creep deformation
    Sandstrom, Rolf
    STRUCTURAL INTEGRITY IN NUCLEAR ENGINEERING, 2011, : 17 - 17
  • [3] Modelling the creep behaviour of chipboard: The rheological approach
    Mundy J.S.
    Bonfield P.W.
    Dinwoodie J.M.
    Paxton B.H.
    Wood Science and Technology, 1998, 32 (4) : 261 - 272
  • [4] Creep-based life prediction modelling of aluminium in fire
    Kandare, E.
    Feih, S.
    Kootsookos, A.
    Mathys, Z.
    Lattimer, B. Y.
    Mouritz, A. P.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (4-5): : 1185 - 1193
  • [5] Creep behavior of copper-chromium in-situ composite
    K. L. Lee
    A. F. Whitehouse
    S. I. Hong
    A. M. Russell
    Metallurgical and Materials Transactions A, 2004, 35 : 695 - 705
  • [6] Constitutive modelling and springback prediction for creep age forming of 2124 aluminium alloy
    Xu, X. L.
    Zhan, L. H.
    Li, Y. G.
    Huang, M. H.
    MATERIALS SCIENCE AND TECHNOLOGY, 2013, 29 (09) : 1139 - 1143
  • [7] The microstructural modelling of room temperature creep in titanium alloys using a cellular automata model
    Boutana, Nabil
    Bocher, Philippe
    Jahazi, Mohammad
    Piot, D.
    Montheillet, F.
    International Journal of Microstructure and Materials Properties, 2008, 3 (4-5) : 642 - 653
  • [8] Copper, Boron, and Cerium Additions in Type 347 Austenitic Steel to Improve Creep Rupture Strength
    Kinkar Laha
    J. Kyono
    Norio Shinya
    Metallurgical and Materials Transactions A, 2012, 43 : 1187 - 1197
  • [9] Correlation Analysis of Established Creep Failure Models through Computational Modelling for SS-304 Material
    Sattar, Mohsin
    Othman, Abdul Rahim
    Muzamil, Muhammad
    Kamaruddin, Shahrul
    Akhtar, Maaz
    Khan, Rashid
    METALS, 2023, 13 (02)
  • [10] Modelling creep behavior of soft clay by incorporating updated volumetric and deviatoric strain-time equations
    Chen, Ge
    Zhu, Jungao
    Li, Jian
    Wu, Gang
    Guo, Wanli
    GEOMECHANICS AND ENGINEERING, 2022, 35 (01) : 55 - 65