On the Sums of Reciprocal Hyperfibonacci Numbers and Hyperlucas Numbers

被引:0
|
作者
Liu, Rui [1 ]
Zhao, Feng-Zhen [1 ]
机构
[1] Dalian Univ Technol, Dept Math, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Fibonacci numbers; Lucas numbers;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the properties of hyperfibonacci numbers and hyperlucas numbers. We investigate the sums of reciprocal hyperfibonacci numbers and hyperlucas numbers. In addition, we establish some identities related to reciprocal hyperfibonacci numbers and hyperlucas numbers.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Some Properties of Hyperfibonacci and Hyperlucas Numbers
    Cao, Ning-Ning
    Zhao, Feng-Zhen
    JOURNAL OF INTEGER SEQUENCES, 2010, 13 (08)
  • [2] Reciprocal sums of Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Lekata
    DIOPHANTINE ANALYSIS AND RELATED FIELDS - DARF 2007/2008, 2008, 976 : 77 - +
  • [3] Alternating sums of reciprocal generalized Fibonacci numbers
    Kuhapatanakul, Kantaphon
    SPRINGERPLUS, 2014, 3
  • [4] Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers
    C. Elsner
    S. Shimomura
    I. Shiokawa
    The Ramanujan Journal, 2008, 17 : 429 - 446
  • [5] Exceptional algebraic relations for reciprocal sums of Fibonacci and Lucas numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    DIOPHANTINE ANALYSIS AND RELATED FIELDS 2011 (DARF 2011), 2011, 1385 : 17 - +
  • [6] Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    RAMANUJAN JOURNAL, 2008, 17 (03) : 429 - 446
  • [7] Algebraic independence results for reciprocal sums of Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    ACTA ARITHMETICA, 2011, 148 (03) : 205 - 223
  • [8] ALGEBRAIC INDEPENDENCE OF MODIFIED RECIPROCAL SUMS OF PRODUCTS OF FIBONACCI NUMBERS
    Tanaka, Taka-aki
    TSUKUBA JOURNAL OF MATHEMATICS, 2006, 30 (02) : 341 - 357
  • [10] Algebraic independence results for reciprocal sums of Fibonacci and Lucas numbers
    Stein, Martin
    DIOPHANTINE ANALYSIS AND RELATED FIELDS 2011 (DARF 2011), 2011, 1385 : 101 - 107