C*-Algebras of Meta-Invariant Operators in Modules Over Cayley-Dickson Algebras

被引:0
作者
Ludkovsky, Sergey V. [1 ,2 ]
机构
[1] Moscow State Tech Univ, MIREA, Dept Appl Math, Av Vernadsky 78, Moscow 119454, Russia
[2] Univ Bretagne Sud, Lab Math Bretagne Atlantique, UMR CNRS 6205, LMBA, F-56017 Vannes, France
关键词
Hypercomplex numbers; Cayley-Dickson algebras; Operator; Operator algebra; C*-algebra; Spectra; Spectral measure;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Algebras of meta-invariant operators in Hilbert modules over Cayley-Dickson algebras generalizing complex C*-algebras are studied. Their structural and spectral theory are investigated. For algebras of meta-invariant operators which are analogous to Gelfand-Naimark-Segal's, von Neuman's, Kaplansky's, etc. are considered. Some related theorems are proved.
引用
收藏
页码:625 / 684
页数:60
相关论文
共 30 条
[1]  
Baez JC, 2002, B AM MATH SOC, V39, P145
[2]  
Connes A, 1994, NONCOMMUTATIVE GEOME
[3]  
DICKSON LE, 1975, COLLECTED MATH PAPER
[4]  
EDWARDS RE, 1965, FUNCTIONAL ANAL
[5]  
EMCH G, 1963, HELV PHYS ACTA, V36, P739
[6]  
Engelking R., 1989, GEN TOPOLOGY
[7]  
Gurlebeck K., 1990, QUATERNIONIC ANAL EL, P253, DOI DOI 10.1007/978-3-0348-7295-9
[8]  
Gurlebeck K., 1997, QUATERNIONIC CLIFFOR
[9]  
Kadison R., 1983, ELEMENTARY THEORY PU
[10]  
Kantor I., 1989, HYPERCOMPLEX NUMBERS