ESTIMATION FOR THE SCALED HALF LOGISTIC DISTRIBUTION UNDER TYPE-II CENSORING

被引:25
|
作者
BALAKRISHNAN, N [1 ]
CHAN, PS [1 ]
机构
[1] MCMASTER UNIV,DEPT MATH & STAT,HAMILTON L8S 4K1,ONTARIO,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
HALF LOGISTIC DISTRIBUTION; ORDER STATISTICS; TYPE-II CENSORED SAMPLES; BEST LINEAR UNBIASED ESTIMATOR; MAXIMUM LIKELIHOOD ESTIMATOR; APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATOR; BIAS; MEAN SQUARE ERROR; LIFETIME MODEL; RELATIVE EFFICIENCY; RAO-CRAMER LOWER BOUND;
D O I
10.1016/0167-9473(92)90001-V
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We derive the best linear unbiased estimator (BLUE) based on doubly Type-II censored samples for the scaled half logistic distribution. Next, we derive the best linear unbiased estimator and the asymptotic best linear unbiased estimator based on k optimally selected order statistics and show that the asymptotic result provides very close approximation to the finite sample result even for a sample of size as small as 20. The maximum likelihood estimator (MLE) based on either complete or Type-II censored samples does not exist in explicit form. We determine its unbiasing factor and variance through Monte Carlo simulations employing a numerical iterative procedure. We derive an approximate maximum likelihood estimator (AMLE) which has an explicit form and is almost as efficient as the MLE and the BLUE. We illustrate all these methods of estimation with two examples.
引用
收藏
页码:123 / 141
页数:19
相关论文
共 50 条
  • [21] Estimation and Bayesian Prediction for New Version of Xgamma Distribution Under Progressive Type-II Censoring
    El-Saeed, Ahmed R.
    Ruidas, Molay Kumar
    Tolba, Ahlam H.
    SYMMETRY-BASEL, 2025, 17 (03):
  • [22] Estimation of some lifetime parameter of the unit half logistic-geometry distribution under progressively type-II censored data
    Alsadat, Najwan
    Ramadan, Dina A.
    Almetwally, Ehab M.
    Tolba, Ahlam H.
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2023, 16 (04)
  • [23] Estimation of the mean and standard deviation of the logistic distribution based on multiply type-II censored samples
    Balakrishnan, N
    Gupta, SS
    Panchapakesan, S
    STATISTICS, 1995, 27 (1-2) : 127 - 142
  • [24] Bayesian analysis for lognormal distribution under progressive Type-II censoring
    Singh, Sukhdev
    Tripathi, Yogesh Mani
    Wu, Shuo-Jye
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (05): : 1488 - 1504
  • [25] Inference for the extreme value distribution under progressive Type-II censoring
    Balakrishnan, N
    Kannan, N
    Lin, CT
    Wu, SJS
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (01) : 25 - 45
  • [26] Inference for the Two Parameter Reduced Kies Distribution under Progressive Type-II Censoring
    Shrahili, Mansour
    Alotaibi, Naif
    Kumar, Devendra
    Alyami, Salem A.
    MATHEMATICS, 2020, 8 (11) : 1 - 20
  • [27] On estimation of R = P(Y < X) for exponential distribution under progressive type-II censoring
    Saracoglu, Bugra
    Kinaci, Ismail
    Kundu, Debasis
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (05) : 729 - 744
  • [28] Confidence bands for exponential distribution functions under progressive type-II censoring
    Bedbur, Stefan
    Mies, Fabian
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (01) : 60 - 80
  • [29] Estimation on a two-parameter Rayleigh distribution under the progressive Type-II censoring scheme: comparative study
    Seo, Jung-In
    Seo, Byeong-Gyu
    Kang, Suk-Bok
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2019, 26 (02) : 91 - 102
  • [30] Estimation procedures on Type-II censored data from a scaled Muth distribution
    Bicer, Hayrinisa Demirci
    Ozturker, Berkay
    Bicer, Cenker
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2021, 39 (02): : 148 - 158