ON INVARIANT SUBSPACES OF SEVERAL VARIABLE BERGMAN SPACES

被引:11
作者
PUTINAR, M [1 ]
机构
[1] INST MATH,R-79622 BUCHAREST,ROMANIA
关键词
D O I
10.2140/pjm.1991.147.355
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using a natural localization method, one describes the finite codimensional invariant subspaces of the Bergman n-tuple of operators associated to some bounded pseudoconvex domains in C(n), with a sufficiently nice boundary.
引用
收藏
页码:355 / 364
页数:10
相关论文
共 13 条
[1]  
AGRAWAL Om P., 1987, AM J MATH, V109, P23
[2]  
AGRAWAL OP, 1986, PAC J MATH, V121, P1
[3]  
AHERN PR, 1970, J MATH MECH, V19, P963
[4]   FINITE CODIMENSIONAL INVARIANT SUBSPACES OF BERGMAN SPACES [J].
AXLER, S ;
BOURDON, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 306 (02) :805-817
[5]   A QUESTION ON INVARIANT SUBSPACES OF BERGMAN SPACES [J].
BERCOVICI, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) :759-760
[6]   CHARACTERIZATION AND PROPERTIES OF PEAK INTERPOLATION SETS OF A-INFINITY-(D) [J].
CHAUMAT, J ;
CHOLLET, AM .
DUKE MATHEMATICAL JOURNAL, 1980, 47 (04) :763-787
[7]  
Douglas R.G, 1989, PITMAN RES NOTES MAT, V217
[8]  
DOUGLAS RG, 1988, SPECIAL CLASSES LINE, P51
[9]  
H├a┬Armander L., 1965, ACTA MATH, V113, P89, DOI 10.1007/BF02391775
[10]  
Henkin G.M, 1984, THEORY FUNCTIONS COM