Molecular and functional diversity of K+ channels

被引:49
作者
Christie, MJ
机构
[1] Department of Pharmacology, The University of Sydney, New South Wales
来源
CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY | 1995年 / 22卷 / 12期
关键词
A-current; delayed rectifier; G-protein; inward rectifier; K-ATP; K+ channel; shaker;
D O I
10.1111/j.1440-1681.1995.tb02331.x
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
1. Amino acid sequences encoding K+ channels belong to several subfamilies of the voltage-gated ion channel superfamily which includes Na2+-, Ca2+-, and cyclic nucleotide gated channels. The Kv family is the largest group, and encodes delayed rectifier, A-type, and large conductance Ca2+ activated K+ channels. 2. The alpha-subunits of Kv channels form as tetramers of four independent subunits. Each subunit has six membrane spanning regions and a pore forming 'P' region. Subunits belong to subfamilies (Kv1-4, BK, Eag) comprising multiple members, each of which has distinct properties resembling each of the major types of native Kv channel when expressed as homomultimers in heterologous systems. 3. Enormous diversity of Kv channel function arises from the multiplicity of submits, the formation of heteromultimers within subfamilies and from association with intracellular beta-subunit proteins. 4. In the absence of direct structural information, mutational analyses have provided considerable insights into the structure of the voltage-sensor, pore-forming region and the sites of action of drugs, toxins and associated proteins. 5. Another subfamily, the inwardly rectifying, or K-IR, family, appears to have arisen from a deletion of the first four membrane spanning regions of ancient Kv channels, changing gating properties from outward to inward rectification. These include the G-protein gated inward rectifiers and K-ATP channels.
引用
收藏
页码:944 / 951
页数:8
相关论文
共 68 条
[1]   CALCIUM-ACTIVATED POTASSIUM CHANNELS EXPRESSED FROM CLONED COMPLEMENTARY DNAS [J].
ADELMAN, JP ;
SHEN, KZ ;
KAVANAUGH, MP ;
WARREN, RA ;
WU, YN ;
LAGRUTTA, A ;
BOND, CT ;
NORTH, RA .
NEURON, 1992, 9 (02) :209-216
[2]   FULL-LENGTH AND TRUNCATED KV1.3 K+ CHANNELS ARE MODULATED BY 5-HT(1C) RECEPTOR ACTIVATION AND INDEPENDENTLY BY PKC [J].
AIYAR, J ;
GRISSMER, S ;
CHANDY, KG .
AMERICAN JOURNAL OF PHYSIOLOGY, 1993, 265 (06) :C1571-C1578
[3]   POTASSIUM CHANNELS - NEW CHANNEL SUBUNITS ARE A TURN-OFF [J].
ALDRICH, RW .
CURRENT BIOLOGY, 1994, 4 (09) :839-840
[4]   INACTIVATION OF SODIUM CHANNEL .2. GATING CURRENT EXPERIMENTS [J].
ARMSTRONG, CM ;
BEZANILLA, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1977, 70 (05) :567-590
[5]   RETRACTED: CLONING AND FUNCTIONAL EXPRESSION OF A RAT-HEART K-ATP CHANNEL (RETRACTED ARTICLE. SEE VOL 378, PG 792, 1995) [J].
ASHFORD, MLJ ;
BOND, CT ;
BLAIR, TA ;
ADELMAN, JP .
NATURE, 1994, 370 (6489) :456-459
[6]   A COMPONENT OF CALCIUM-ACTIVATED POTASSIUM CHANNELS ENCODED BY THE DROSOPHILA-SLO LOCUS [J].
ATKINSON, NS ;
ROBERTSON, GA ;
GANETZKY, B .
SCIENCE, 1991, 253 (5019) :551-555
[7]   THE PROTEIN ISK IS A DUAL ACTIVATOR OF K+ AND CL- CHANNELS [J].
ATTALI, B ;
GUILLEMARE, E ;
LESAGE, F ;
HONORE, E ;
ROMEY, G ;
LAZDUNSKI, M ;
BARHANIN, J .
NATURE, 1993, 365 (6449) :850-852
[8]   NEW STRUCTURAL MOTIF FOR LIGAND-GATED ION CHANNELS DEFINED BY AN IONOTROPIC ATP RECEPTOR [J].
BRAKE, AJ ;
WAGENBACH, MJ ;
JULIUS, D .
NATURE, 1994, 371 (6497) :519-523
[9]   EPISODIC ATAXIA MYOKYMIA SYNDROME IS ASSOCIATED WITH POINT MUTATIONS IN THE HUMAN POTASSIUM CHANNEL GENE, KCNA1 [J].
BROWNE, DL ;
GANCHER, ST ;
NUTT, JG ;
BRUNT, ERP ;
SMITH, EA ;
KRAMER, P ;
LITT, M .
NATURE GENETICS, 1994, 8 (02) :136-140
[10]   ETHER-A-GO-GO ENCODES A VOLTAGE-GATED CHANNEL PERMEABLE TO K+ AND CA2+ AND MODULATED BY CAMP [J].
BRUGGEMANN, A ;
PARDO, LA ;
STUHMER, W ;
PONGS, O .
NATURE, 1993, 365 (6445) :445-448