GRADED CONTRACTIONS OF REPRESENTATIONS OF ORTHOGONAL AND SYMPLECTIC LIE-ALGEBRAS WITH RESPECT TO THEIR MAXIMAL PARABOLIC SUBALGEBRAS

被引:8
作者
LENG, XD
PATERA, J
机构
[1] Centre de Recherches Math., Montreal Univ., Que.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 13期
关键词
D O I
10.1088/0305-4470/28/13/023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Parabolic gradings of the classical simple Lie algebras o(N,C), (N greater than or equal to 5) and sp(2n, C), (n greater than or equal to 2) with complex parameters are described for all maximal parabolic subalgebras. All contractions which leave a maximal parabolic subalgebra intact and which preserve a parabolic grading (parabolic contractions of Lie algebras) are found. Contractions of the irreducible representations for each parabolic contraction of the Lie algebra are the main results of the article.
引用
收藏
页码:3785 / 3807
页数:23
相关论文
共 16 条
[1]   GRADED CONTRACTIONS OF CASIMIR-OPERATORS [J].
BINCER, AM ;
PATERA, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (20) :5621-5628
[2]   GRADED CONTRACTIONS OF BILINEAR INVARIANT FORMS OF LIE-ALGEBRA [J].
DEMONTIGNY, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (13) :4537-4548
[3]   DISCRETE AND CONTINUOUS GRADED CONTRACTIONS OF LIE-ALGEBRAS AND SUPERALGEBRAS [J].
DEMONTIGNY, M ;
PATERA, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (03) :525-547
[4]   GRADED CONTRACTIONS AND KINEMATICAL GROUPS OF SPACE-TIME [J].
DEMONTIGNY, M ;
PATERA, J ;
TOLAR, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (01) :405-425
[5]   THE DESITTER-INVARIANT DIFFERENTIAL-EQUATIONS AND THEIR CONTRACTION TO POINCARE AND GALILEI [J].
DEMONTIGNY, M .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1993, 108 (10) :1171-1180
[6]  
DEMONTIGNY M, 1993, COMPUT PHYS COMMUN, V76, P389
[7]  
Dynkin E., 1957, AM MATH SOC TRANSL 2, V6, P111, DOI [10.1090/trans2/006/02, DOI 10.1090/TRANS2/006/02]
[8]   THE GELFAND-TSETLIN REPRESENTATIONS OF THE UNITARY CAYLEY-KLEIN ALGEBRAS [J].
GROMOV, NA .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (04) :837-844
[9]  
GROMOV NA, 1990, CONTRACTIONS ANAL CO
[10]   CAYLEY-KLEIN ALGEBRAS AS GRADED CONTRACTIONS OF SO(N+1) [J].
HERRANZ, FJ ;
DEMONTIGNY, M ;
DELOLMO, MA ;
SANTANDER, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (07) :2515-2526