HADAMARD PROBLEM AND COXETER GROUPS - NEW EXAMPLES OF HUYGENS EQUATIONS

被引:21
作者
BEREST, YY
VESELOV, AP
机构
[1] MOSCOW PHYS TECH INST,MOSCOW,RUSSIA
[2] MOSCOW MV LOMONOSOV STATE UNIV,MOSCOW,RUSSIA
关键词
D O I
10.1007/BF01079005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:3 / 12
页数:10
相关论文
共 29 条
[1]   CLASS OF POLYNOMIALS CONNECTED WITH KORTEWEG-DEVRIES EQUATION [J].
ADLER, M ;
MOSER, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 61 (01) :1-30
[2]  
[Anonymous], 1991, HARMONIC ANAL REDUCT
[3]   SOME HINTS ON HUYGENS PRINCIPLE AND HADAMARD CONJECTURE [J].
ASGEIRSSON, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1956, 9 (03) :307-326
[4]  
BABICH VM, 1991, ALGEBR ANAL, V3, P1
[5]  
BEREST YY, 1993, IN PRESS J MATH PHYS
[6]  
BEREST YY, 1993, USP MAT NAUK, V48, P181
[7]  
Bernsten I. M., 1973, USPEHI MAT NAUK, V28, P3
[9]   COMMUTATIVE RINGS OF PARTIAL-DIFFERENTIAL OPERATORS AND LIE-ALGEBRAS [J].
CHALYKH, OA ;
VESELOV, AP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 126 (03) :597-611
[10]  
Courant R., 1964, METHODS MATH PHYS, V2