SATURATED R-UNIFORM HYPERGRAPHS

被引:25
作者
ERDOS, P [1 ]
FUREDI, Z [1 ]
TUZA, Z [1 ]
机构
[1] HUNGARIAN ACAD SCI,INST COMP & AUTOMAT,H-1111 BUDAPEST,HUNGARY
关键词
D O I
10.1016/0012-365X(91)90035-Z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following dual version of Turan's problem is considered: for a given r-uniform hypergraph F, determine the minimum number of edges in an r-uniform hypergraph H on n vertices, such that F not-a-subset-of H but a subhypergraph isomorphic to F occurs whenever a new edge (r-tuple) is added to H. For some types of F we find the exact value of the minimum or describe its asymptotic behavior as n tends to infinity; namely, for H(r)(r + 1, r), H(r)(2r - 2, 2) and H(r)(r + 1, 3), where H(r)(p, q) denotes the family of all r-uniform hypergraphs with p vertices and q edges. Several problems remain open.
引用
收藏
页码:95 / 104
页数:10
相关论文
共 11 条
[1]   ON GENERALIZED GRAPHS [J].
BOLLOBAS, B .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1965, 16 (3-4) :447-&
[2]  
Bollobas B., 1978, LONDON MATH SOC MONO
[3]   A PROBLEM IN GRAPH THEORY [J].
ERDOS, P ;
HAJNAL, A ;
MOON, JW .
AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (10) :1107-&
[4]  
Frankl P., 1982, EUR J COMBIN, V3, P125
[5]   INTERSECTION PATTERNS OF CONVEX-SETS [J].
KALAI, G .
ISRAEL JOURNAL OF MATHEMATICS, 1984, 48 (2-3) :161-174
[6]   SATURATED GRAPHS WITH MINIMAL NUMBER OF EDGES [J].
KASZONYI, L ;
TUZA, Z .
JOURNAL OF GRAPH THEORY, 1986, 10 (02) :203-210
[7]  
RUZSA IZ, 1978, P 5 HUNG C KESZ, V2, P939
[8]  
Turan P., 1941, MAT FIZ LAPOK, V48, P436
[9]  
TUZA Z, IN PRESS DISCRETE MA
[10]  
Tuza Zsolt, 1988, ARS COMBINATORIA, V25, P105