TAUB NUMBERS AT FUTURE NULL INFINITY

被引:6
作者
GLASS, EN
机构
[1] Physics Department, University of Windsor, Windsor
来源
PHYSICAL REVIEW D | 1993年 / 47卷 / 02期
关键词
D O I
10.1103/PhysRevD.47.474
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Taub numbers are studied on asymptotically flat backgrounds with Killing symmetries. When the field equations and the linearized field equations for a metric perturbation are solved, such perturbed space-times admit zeroth-, first-, and second-order Taub numbers. Zeroth-order Taub numbers are Komar constants of the background. For each Killing symmetry of the background, first-order Taub numbers give the contribution of the perturbation to the -associated Komar constant, such as the perturbing mass. Second-order Taub numbers give the rate of gravitational radiative loss of the background conserved quantity.
引用
收藏
页码:474 / 479
页数:6
相关论文
共 19 条
[1]   PERTURBATIONS OF CONSERVATION-LAWS IN FIELD-THEORIES [J].
ARMS, JM ;
ANDERSON, IM .
ANNALS OF PHYSICS, 1986, 167 (02) :354-389
[2]   GRAVITATIONAL WAVES IN GENERAL RELATIVITY .7. WAVES FROM AXI-SYMMETRIC ISOLATED SYSTEMS [J].
BONDI, H ;
VANDERBU.MG ;
METZNER, AWK .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 269 (1336) :21-&
[3]   LOCAL LINEARIZATION STABILITY [J].
BRILL, D ;
REULA, O ;
SCHMIDT, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (08) :1844-1847
[4]   ASYMPTOTIC SIMPLICITY IS STABLE [J].
GEROCH, R ;
XANTHOPOULOS, BC .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (03) :714-719
[5]  
Glass E. N., 1970, Journal of Mathematical Physics, V11, P3400, DOI 10.1063/1.1665140
[6]   CONSERVED QUANTITIES AT SPATIAL AND NULL INFINITY - THE PENROSE POTENTIAL [J].
GOLDBERG, JN .
PHYSICAL REVIEW D, 1990, 41 (02) :410-417
[7]  
HABISOHN CX, 1986, J MATH PHYS, V27, P2758
[8]  
HAWKING SW, 1973, LARGE CALE STRUCTURE, P221
[9]   COVARIANT CONSERVATION LAWS IN GENERAL RELATIVITY [J].
KOMAR, A .
PHYSICAL REVIEW, 1959, 113 (03) :934-936
[10]   SPACE-TIME SYMMETRIES AND LINEARIZATION STABILITY OF EINSTEIN EQUATIONS .2. [J].
MONCRIEF, V .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (10) :1893-1902