OPTIMALITY THEORY FOR SEMIINFINITE LINEAR-PROGRAMMING

被引:6
作者
GOBERNA, MA [1 ]
LOPEZ, MA [1 ]
机构
[1] UNIV ALICANTE,DEPT STAT & OPERAT RES,E-03071 ALACANT,SPAIN
关键词
SEMIINFINITE PROGRAMMING; LINEAR PROGRAMMING; OPTIMALITY; CONSTRAINT QUALIFICATIONS; FEASIBLE DIRECTIONS;
D O I
10.1080/01630569508816638
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an exhaustive approach to optimality theory in semi-infinite linear programming, placing a special emphasis on generality. After surveying optimality conditions for general problems, a detailed analysis is made of problems in which the coefficients are continuous functions of a parameter which varies on a compact set, adopting a feasible directions approach. Lastly, the case of analytical coefficients over an interval is considered in some detail.
引用
收藏
页码:669 / 700
页数:32
相关论文
共 28 条
[1]  
ANDERSON EJ, 1985, LECT NOTES ECON MATH, V259, P108
[2]  
[Anonymous], 1985, FIXED POINT THEOREMS, DOI DOI 10.1017/CBO9780511625756
[3]  
Bank B., 1983, NONLINEAR PARAMETRIC, V26, P594
[4]  
BENISRAEL A, 1981, OPTIMALITY NONLINEAR
[5]   OPTIMALITY CONDITIONS FOR CONVEX SEMI-INFINITE PROGRAMMING-PROBLEMS [J].
BENTAL, A ;
KERZNER, L ;
ZLOBEC, S .
NAVAL RESEARCH LOGISTICS, 1980, 27 (03) :413-435
[6]   AN EXTENSION OF STRONG UNIQUENESS TO RATIONAL APPROXIMATION [J].
BROSOWSKI, B ;
GUERREIRO, C .
JOURNAL OF APPROXIMATION THEORY, 1986, 46 (04) :345-373
[7]   STABILITY OF BEST RATIONAL CHEBYSHEV-APPROXIMATION [J].
BROSOWSKI, B ;
GUERREIRO, C .
JOURNAL OF APPROXIMATION THEORY, 1990, 61 (03) :279-321
[8]   CONDITIONS FOR THE UNIQUENESS OF BEST GENERALIZED RATIONAL TSCHEBYSCHEV APPROXIMATION TO DIFFERENTIABLE AND ANALYTIC-FUNCTIONS [J].
BROSOWSKI, B ;
GUERREIRO, C .
JOURNAL OF APPROXIMATION THEORY, 1984, 42 (02) :149-172
[10]  
BROSOWSKI B, 1984, LECTURE NOTES CONTRO, V66, P25