Exact solutions for time-fractional Fokker-Planck-Kolmogorov equation of Geometric Brownian motion via Lie point symmetries

被引:6
作者
Naderifard, Azadeh [1 ]
Dastranj, Elham [1 ]
Hejazi, S. Reza [1 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, Shahrood, Semnan, Iran
关键词
Fokker-Planck equation; time-fractional PDE; geometric Brownian motion; lie symmetry;
D O I
10.1142/S2424786318500093
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, the transition joint probability density function of the solution of geometric Brownian motion (GBM) equation is obtained via Lie group theory of differential equations (DEs). Lie symmetry analysis is applied to find new solutions for time-fractional Fokker-Planck-Kolmogorov equation of GBM. This analysis classifies the forms of the solutions for the equation by the similarity variables arising from the symmetry operators. Finally, an analytic method called invariant subspace method is applied in order to find another exact solution.
引用
收藏
页数:15
相关论文
共 22 条
[1]   Symmetry analysis of wave equation on sphere [J].
Azad, H. ;
Mustafa, M. T. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (02) :1180-1188
[2]  
Bjork T., 2009, ARBITRAGE THEORY CON
[3]  
BLUMAN GW, 1969, J MATH MECH, V18, P1025
[4]  
Floris C., 2013, ENGINEERING, V5, P975, DOI [10.4236/eng.2013.512119, DOI 10.4236/ENG.2013.512119]
[5]  
Galaktionov V., 2007, APPL MATH NONLINEAR
[6]   Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations [J].
Gazizov, R. K. ;
Ibragimov, N. H. ;
Lukashchuk, S. Yu. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 23 (1-3) :153-163
[7]   Construction of exact solutions for fractional order differential equations by the invariant subspace method [J].
Gazizov, R. K. ;
Kasatkin, A. A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) :576-584
[8]   Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative [J].
Huang, Qing ;
Zhdanov, Renat .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 409 :110-118
[9]  
Hydon PeterE., 2000, SYMMETRY METHOD DIFF
[10]   Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative [J].
Jumarie, Guy .
APPLIED MATHEMATICS LETTERS, 2009, 22 (11) :1659-1664