METHANE EMISSION FROM PLOTS WITH DIFFERENCES IN FERTILIZER APPLICATION IN THAI PADDY FIELDS

被引:38
作者
JERMSAWATDIPONG, P
MURASE, J
PRABUDDHAM, P
HASATHON, Y
KHOMTHONG, N
NAKLANG, K
WATANABE, A
HARAGUCHI, H
KIMURA, M
机构
[1] NAGOYA UNIV,SCH AGR SCI,CHIKUSA KU,NAGOYA 46401,JAPAN
[2] MINIST AGR & COOPERAT,DEPT AGR,BANGKOK,THAILAND
[3] PATHUMTHANI RICE EXPT STN,PATHUMTHANI,THAILAND
[4] SURIN RICE EXPT STN,SURIN,THAILAND
[5] NAGOYA UNIV,SCH ENGN,CHIKUSA KU,NAGOYA 46401,JAPAN
关键词
FERTILIZER; METHANE EMISSION; SEASONAL VARIATION; SOIL TYPE; TROPICAL PADDY SOIL;
D O I
10.1080/00380768.1994.10414279
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Methane emission rates from plots with differences in fertilizer application (no fertilizer: NF-, chemical fertilizer: CF-, and organic materials: OM-) in 3 typical Thai paddy fields (fresh water alluvial, acid sulfate, and low humic gley paddy fields) were measured every week throughout the rice-growing period. The CH4 emission rates from the NF- and CF-plots in the paddy field with acid sulfate soil were much lower than the CH4 emission rates from similar plots in other countries, while those from the paddy field with low humic gley soil were much higher. The CH4 emission rates from these plots in the paddy field with fresh water alluvial soil corresponded to the lower reported values. The CH4 emission rates from the OM-plots in Thailand were within the ranges of reported values or higher. Methane was mainly emitted in the first half of the growth period in Thailand irrespective of the plots, in contrast to reports stating that CH, emission was higher in the second half of the growth period in the temperate region. The total amount of CH4 emission (g C m-2) during the rice growing period ranged from 4 to 59 in the fresh water alluvial paddy field, 0.6 to 17 in the acid sulfate paddy field, and 21 to 35 in the low humic gley paddy field, respectively.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 20 条
[1]   FUTURE CH4 EMISSIONS FROM RICE PRODUCTION [J].
ANASTASI, C ;
DOWDING, M ;
SIMPSON, VJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D7) :7521-7525
[2]   SOURCES OF ATMOSPHERIC METHANE - MEASUREMENTS IN RICE PADDIES AND A DISCUSSION [J].
CICERONE, RJ ;
SHETTER, JD .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1981, 86 (NC8) :7203-7209
[3]  
CICERONE RJ, 1983, J GEOPHYS RES-OCEANS, V88, P1022, DOI 10.1029/JC088iC15p11022
[4]   EFFECTS OF VEGETATION ON THE EMISSION OF METHANE FROM SUBMERGED PADDY SOIL [J].
HOLZAPFELPSCHORN, A ;
CONRAD, R ;
SEILER, W .
PLANT AND SOIL, 1986, 92 (02) :223-233
[5]  
KAWAGUCHI K, 1977, PADDY SOILS TROPICAL, P156
[6]   EMISSIONS OF TRACE GASES FROM CHINESE RICE FIELDS AND BIOGAS GENERATORS - CH4, N2O, CO, CO2, CHLOROCARBONS, AND HYDROCARBONS [J].
KHALIL, MAK ;
RASMUSSEN, RA ;
WANG, MX ;
REN, L .
CHEMOSPHERE, 1990, 20 (1-2) :207-226
[7]  
Kimura M, 1991, ENV SCI, V4, P265, DOI DOI 10.11353/sesj1988.4.265
[8]  
MOTOMURA S, 1979, NEKKEN SHIRYO, V45, P54
[9]  
MOTOMURA S, 1979, NEKKEN SHIRYO, V45, P178
[10]  
MOTOMURA S, 1979, NEKKEN SHIRYO, V45, P72