NONORTHOGONAL DOMAINS IN PHASE-SPACE OF QUANTUM OPTICS AND THEIR RELATION TO FRACTIONAL FOURIER-TRANSFORMS

被引:34
|
作者
AYTUR, O
OZAKTAS, HM
机构
[1] Department of Electrical Engineering, Bilkent University, TR-06533 Bilkent, Ankara
关键词
D O I
10.1016/0030-4018(95)00452-E
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is customary to define a phase space such that position and momentum are mutually orthogonal coordinates. Associated with these coordinates, or domains, are the position and momentum operators. Representations of the state vector in these coordinates are related by the Fourier transformation. We consider a continuum of ''fractional'' domains making arbitrary angles with the position and momentum domains. Representations in these domains are related by the fractional Fourier transformation. We derive transformation, commutation, and uncertainty relations between coordinate multiplication, differentiation, translation, and phase shift operators making arbitrary angles with each other. These results have a simple geometric interpretation in phase space and applications in quantum optics.
引用
收藏
页码:166 / 170
页数:5
相关论文
共 50 条
  • [1] OPTICAL-PHASE RETRIEVAL BY PHASE-SPACE TOMOGRAPHY AND FRACTIONAL-ORDER FOURIER-TRANSFORMS
    MCALISTER, DF
    BECK, M
    CLARKE, L
    MAYER, A
    RAYMER, MG
    OPTICS LETTERS, 1995, 20 (10) : 1181 - 1183
  • [2] ON NAMIASS FRACTIONAL FOURIER-TRANSFORMS
    MCBRIDE, AC
    KERR, FH
    IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 39 (02) : 159 - 175
  • [3] FRACTIONAL FOURIER-TRANSFORMS AND IMAGING
    BERNARDO, LM
    SOARES, ODD
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (10): : 2622 - 2626
  • [4] SELF FOURIER FUNCTIONS AND FRACTIONAL FOURIER-TRANSFORMS
    MENDLOVIC, D
    OZAKTAS, HM
    LOHMANN, AW
    OPTICS COMMUNICATIONS, 1994, 105 (1-2) : 36 - 38
  • [5] FOURIER-TRANSFORMS OVER WARPED DOMAINS
    DUBROFF, RE
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1985, 23 (03): : 349 - 350
  • [6] Fractional Fourier transform on the phase-space plane
    Chountasis, S
    Vourdas, A
    Bendjaballah, C
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, PT 2, 2001, 568 : 468 - 475
  • [7] IMAGE RECONSTRUCTION USING FRACTIONAL FOURIER-TRANSFORMS
    KHARE, RS
    CURRENT SCIENCE, 1974, 43 (23): : 743 - 744
  • [8] FOURIER-TRANSFORMS OF FRACTIONAL ORDER AND THEIR OPTICAL INTERPRETATION
    OZAKTAS, HM
    MENDLOVIC, D
    OPTICS COMMUNICATIONS, 1993, 101 (3-4) : 163 - 169
  • [9] GENERAL OPTICAL IMPLEMENTATIONS OF FRACTIONAL FOURIER-TRANSFORMS
    LIU, ST
    XU, JD
    ZHANG, Y
    CHEN, LX
    LI, CF
    OPTICS LETTERS, 1995, 20 (09) : 1053 - 1055
  • [10] FRACTIONAL FOURIER-TRANSFORMS AND OPTICAL-SYSTEMS
    BERNARDO, LM
    SOARES, ODD
    OPTICS COMMUNICATIONS, 1994, 110 (5-6) : 517 - 522