Gradient Tree Boosting-Based Positioning Method for Monolithic Scintillator Crystals in Positron Emission Tomography

被引:58
作者
Mueller, Florian [1 ]
Schug, David [1 ]
Hallen, Patrick [1 ]
Grahe, Jan [1 ]
Schulz, Volkmar [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Expt Mol Imaging, Dept Phys Mol Imaging Syst, D-52074 Aachen, Germany
基金
欧盟地平线“2020”;
关键词
Field-programmable gate array (FPGA); gradient tree boosting; machine learning; monolithic scintillator; positron emission tomography (PET);
D O I
10.1109/TRPMS.2018.2837738
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Monolithic crystals are considered as an alternative for complex segmented scintillator arrays in positron emission tomography systems. Monoliths provide high sensitivity, good timing, and energy resolution while being cheaper than highly segmented arrays. Furthermore, monoliths enable intrinsic depth of interaction capabilities and good spatial resolutions (SRs) mostly based on statistical calibrations. To widely translate monoliths into clinical applications, a time-efficient calibration method and a positioning algorithm implementable in system architecture such as field-programmable gate arrays (FPGAs) are required. We present a novel positioning algorithm based on gradient tree boosting (GTB) and a fast fan beam calibration requiring less than 1 h per detector block. GTB is a supervised machine learning technique building a set of sequential binary decisions (decision trees). The algorithm handles different sets of input features, their combinations and partially missing data. GTB models are strongly adaptable influencing both the positioning performance and the memory requirement of trained positioning models. For an FPGA-implementation, the memory requirement is the limiting aspect. We demonstrate a general optimization and propose two different optimization scenarios: one without compromising on positioning performance and one optimizing the positioning performance for a given memory restriction. For a 12 mm high LYSO-block, we achieve an SR better than 1.4 mm FWHM.
引用
收藏
页码:411 / 421
页数:11
相关论文
共 35 条
[1]  
[Anonymous], 2008, 42008 NEMA NU
[2]   A 32 mm x 32 mm x 22 mm monolithic LYSO:Ce detector with dual-sided digital photon counter readout for ultrahigh-performance TOF-PET and TOF-PET/MRI [J].
Borghi, Giacomo ;
Peet, Bart Jan ;
Tabacchini, Valerio ;
Schaart, Dennis R. .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (13) :4929-4949
[3]   Towards monolithic scintillator based TOF-PET systems: practical methods for detector calibration and operation [J].
Borghi, Giacomo ;
Tabacchini, Valerio ;
Schaart, Dennis R. .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (13) :4904-4928
[4]   Experimental Validation of an Efficient Fan-Beam Calibration Procedure for k-Nearest Neighbor Position Estimation in Monolithic Scintillator Detectors [J].
Borghi, Giacomo ;
Tabacchini, Valerio ;
Seifert, Stefan ;
Schaart, Dennis R. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (01) :57-67
[5]   Evaluation of machine learning algorithms for localization of photons in undivided scintillator blocks for PET detectors [J].
Bruyndonckx, Peter ;
Lemaitre, Cedric ;
van der Laan, D. J. ;
Maas, Marnix ;
Schaart, Dennis ;
Wang Yonggang ;
Li, Zhi ;
Krieguer, M. ;
Tavernier, Stefaan .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2008, 55 (03) :918-924
[6]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[7]   Determination of the Interaction Position of Gamma Photons in Monolithic Scintillators Using Neural Network Fitting [J].
Conde, P. ;
Iborra, A. ;
Gonzalez, A. J. ;
Hernandez, L. ;
Bellido, P. ;
Moliner, L. ;
Rigla, J. P. ;
Rodriguez-Alvarez, M. J. ;
Sanchez, F. ;
Seimetz, M. ;
Soriano, A. ;
Vidal, L. F. ;
Benlloch, J. M. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2016, 63 (01) :30-36
[8]   The Digital Silicon Photomultiplier - A Novel Sensor for the Detection of Scintillation Light [J].
Degenhardt, Carsten ;
Prescher, Gordian ;
Frach, Thomas ;
Thon, Andreas ;
de Gruyter, Rik ;
Schmitz, Anja ;
Ballizany, Rob .
2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, :2383-2386
[9]   Overfitting and undercomputing in machine learning [J].
Dietterich, T .
ACM COMPUTING SURVEYS, 1995, 27 (03) :326-327
[10]   DigiPET: sub-millimeter spatial resolution small-animal PET imaging using thin monolithic scintillators [J].
Espana, Samuel ;
Marcinkowski, Radoslaw ;
Keereman, Vincent ;
Vandenberghe, Stefaan ;
Van Holen, Roel .
PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (13) :3405-3420