GEOMETRIC FACTORS IN THE ADIABATIC EVOLUTION OF CLASSICAL-SYSTEMS

被引:1
作者
CASAS, F [1 ]
OTEO, JA [1 ]
ROS, J [1 ]
机构
[1] UNIV VALENCIA,CSIC,IFIC,E-46100 BURJASSOT,SPAIN
关键词
D O I
10.1016/0375-9601(92)90839-E
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The adiabatic evolution of the classical time-dependent generalized harmonic oscillator in one dimension is analyzed in detail. In particular, we define the adiabatic approximation, obtain a new derivation of Hannay's angle requiring no averaging principle and point out the existence of a geometric factor accompanying changes in the adiabatic invariant.
引用
收藏
页码:359 / 363
页数:5
相关论文
共 27 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   GEOMETRIC ANGLES IN QUANTUM AND CLASSICAL PHYSICS [J].
ANANDAN, J .
PHYSICS LETTERS A, 1988, 129 (04) :201-207
[3]  
Arnol'd V. I., 1988, ENCY MATH SCI, V3
[5]   HISTORIES OF ADIABATIC QUANTUM TRANSITIONS [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 429 (1876) :61-72
[6]   CLASSICAL ADIABATIC ANGLES AND QUANTAL ADIABATIC PHASE [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (01) :15-27
[7]   GEOMETRIC AMPLITUDE FACTORS IN ADIABATIC QUANTUM TRANSITIONS [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 430 (1879) :405-411
[8]   COMPUTATION OF NONLINEAR BEHAVIOR OF HAMILTONIAN-SYSTEMS USING LIE ALGEBRAIC METHODS [J].
DRAGT, AJ ;
FOREST, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (12) :2734-2744
[9]  
DYKHNE AM, 1960, ZH EKSP TEOR FIZ, V11, P411
[10]  
DYKHNE AM, 1962, ZH EKSP TEOR FIZ, V14, P941